コード例 #1
0
ファイル: derivatives.py プロジェクト: Inflane/homework
def main():
    fname = 'data/empire.jpg'
    img = Image.open(fname).convert('L')
    #img.thumbnail((500, 500))

    im = array(img)
    pics = [img]
    for func in (sobel, gaussian, prewitt):
        pics.extend(map(toimg, trans(im, func)))
    grid(pics).show()
コード例 #2
0
ファイル: derivatives.py プロジェクト: mgduarte/homework
def main():
    fname = 'data/empire.jpg'
    img = Image.open(fname).convert('L')
    #img.thumbnail((500, 500))

    im = array(img)
    pics = [img]
    for func in (sobel, gaussian, prewitt):
        pics.extend(map(toimg, trans(im, func)))
    grid(pics).show()
コード例 #3
0
ファイル: map.py プロジェクト: Phosphenius/battle-snakes
    def load_map(self, path):
        doc = dom.parse(path)
        maptag = doc.firstChild

        self.name = os.path.splitext(os.path.basename(path))[0]
        self.description = maptag.getAttribute('description')
        self.size_str = maptag.getAttribute('size')
        self.width = int(self.size_str.split('x')[0])
        self.height = int(self.size_str.split('x')[1])

        for node in maptag.childNodes:
            if node.nodeName == 'Tiles':
                self.tiles = str_to_vec_lst(node.firstChild.data)
            elif node.nodeName == 'Spawnpoints':
                self.spawnpoints = str_to_vec_lst(node.firstChild.data)
            elif node.nodeName == 'Portals':
                for portal_node in node.childNodes:
                    if portal_node.nodeName == 'Portal':
                        # Needs refactoring/improvement
                        point1 = point2 = p1_dir = p2_dir = None
                        for p_node in portal_node.childNodes:
                            if p_node.nodeName == 'p1':
                                point1 = \
                                    str_to_vec(p_node.firstChild.data)
                                p1_dir = \
                                    DIRECTIONS[
                                        p_node.getAttribute('dir')]
                            elif p_node.nodeName == 'p2':
                                point2 = \
                                    str_to_vec(p_node.firstChild.data)
                                p2_dir = \
                                    DIRECTIONS[
                                        p_node.getAttribute('dir')]
                            if point1 is not None and point2 is not None:
                                self.portals.update(
                                    {point1: (point2, p2_dir),
                                     point2: (point1, p1_dir)})

        set_of_tiles = set(grid(self.width, self.height))
        set_of_tiles -= set(self.tiles)

        accessibility_map = [None] * self.width
        accessibility_map = [[None] * self.height for _ in
                             accessibility_map]

        for xpos, ypos in grid(self.width, self.height):
            accessibility_map[xpos][ypos] = (xpos, ypos) not in self.tiles

        while set_of_tiles:
            pos = set_of_tiles.pop()
            tiles = flood_fill(accessibility_map,
                               (self.width, self.height), pos)
            portals = []

            for portal in self.portals:
                if (self.portals[portal][0] in tiles and
                        portal not in tiles):
                    portals.append(portal)

            self.islands.append(MapAccessibilityNode(tiles, portals))

            set_of_tiles -= tiles
コード例 #4
0
directions = np.rad2deg(
    np.arctan([(y2 - y1) / ((x2 - x1) + 0.001)
               for (x1, y1), (x2, y2) in lines]))
directions = np.where(directions < 0, directions + 180, directions)
hist = np.histogram(directions, range=[0, 180], bins=180)
sort_indexes = np.argsort(hist[0])
hist = hist[0][sort_indexes], hist[1][sort_indexes]

plt.figure()
plt.bar(hist[1], hist[0])

a1, a2 = hist[1][-2:]
print(" - Ângulos mais frequentes: " + str(a1) + ", " + str(a2))

print('Exemplo de grade com frequência e fase especificada')
plt.imshow(utils.grid(pimg.shape, [a1, a2], [0.02, 0.01], [1, 3], 3))
plt.show()

width = 5
img_fit = np.where(pimg == 1, width, -1 / width)


def plot_img_grid(image_grid):
    grid_height, grid_width = len(image_grid), len(image_grid[0])
    fig, axes = plt.subplots(grid_height,
                             grid_width,
                             squeeze=False,
                             figsize=1.5 *
                             np.array(plt.rcParams['figure.figsize']))
    for i, row in enumerate(axes):
        for j, ax in enumerate(row):
コード例 #5
0
ファイル: map.py プロジェクト: Phosphenius/battle-snakes
    def load_map(self, path):
        doc = dom.parse(path)
        maptag = doc.firstChild

        self.name = os.path.splitext(os.path.basename(path))[0]
        self.description = maptag.getAttribute('description')
        self.size_str = maptag.getAttribute('size')
        self.width = int(self.size_str.split('x')[0])
        self.height = int(self.size_str.split('x')[1])

        for node in maptag.childNodes:
            if node.nodeName == 'Tiles':
                self.tiles = str_to_vec_lst(node.firstChild.data)
            elif node.nodeName == 'Spawnpoints':
                self.spawnpoints = str_to_vec_lst(node.firstChild.data)
            elif node.nodeName == 'Portals':
                for portal_node in node.childNodes:
                    if portal_node.nodeName == 'Portal':
                        # Needs refactoring/improvement
                        point1 = point2 = p1_dir = p2_dir = None
                        for p_node in portal_node.childNodes:
                            if p_node.nodeName == 'p1':
                                point1 = \
                                    str_to_vec(p_node.firstChild.data)
                                p1_dir = \
                                    DIRECTIONS[
                                        p_node.getAttribute('dir')]
                            elif p_node.nodeName == 'p2':
                                point2 = \
                                    str_to_vec(p_node.firstChild.data)
                                p2_dir = \
                                    DIRECTIONS[
                                        p_node.getAttribute('dir')]
                            if point1 is not None and point2 is not None:
                                self.portals.update({
                                    point1: (point2, p2_dir),
                                    point2: (point1, p1_dir)
                                })

        set_of_tiles = set(grid(self.width, self.height))
        set_of_tiles -= set(self.tiles)

        accessibility_map = [None] * self.width
        accessibility_map = [[None] * self.height for _ in accessibility_map]

        for xpos, ypos in grid(self.width, self.height):
            accessibility_map[xpos][ypos] = (xpos, ypos) not in self.tiles

        while set_of_tiles:
            pos = set_of_tiles.pop()
            tiles = flood_fill(accessibility_map, (self.width, self.height),
                               pos)
            portals = []

            for portal in self.portals:
                if (self.portals[portal][0] in tiles and portal not in tiles):
                    portals.append(portal)

            self.islands.append(MapAccessibilityNode(tiles, portals))

            set_of_tiles -= tiles
コード例 #6
0
#!/usr/bin/env python

from __future__ import print_function

from utils import grid
from utils import partII

if __name__ == '__main__':
    power_level = grid(grid_serial_number=1788, size=300)
    coordinates, power, size = partII(power_level)
    print('Answer: {},{},{}'.format(coordinates[0], coordinates[1], size))
    #142,265,7
コード例 #7
0
ファイル: wrmap.py プロジェクト: StephenEhmann/wrmap
         (0, 0): 0.0,
         (1, 0): 0.1,
         (2, 0): 0.2,
         (3, 0): 0.3,
         (4, 0): 0.4,
         (5, 0): 0.5,
         (6, 0): 0.6,
         (7, 0): 0.7,
         (8, 0): 0.8,
         (9, 0): 0.9,
         (10, 0): 1.0,
     }
     png.write(args.out, config, valResults, 11, 1)
     sys.exit(0)
 i = 0
 for loc in utils.grid(bounds, lat_steps, lng_steps):
     yi = i // lng_steps
     xi = i % lng_steps
     #print('xi = ' + str(xi) + ' yi = ' + str(yi))
     y = loc['loc']['lat']
     x = loc['loc']['lng']
     results[(y, x)] = {}
     if (1):
         if (funcRecord.get('module')):
             results[(y, x)]['val'] = evaluate_variable((y, x), data, config, args.func)
         else:
             results[(y, x)]['val'] = evaluate((y, x), data, config, funcRecord)
         valResults[(xi,yi)] = results[(y, x)]['val']
     else:
         # for testing with something like "wrmap.py -resolution 5 -eval"
         results[(y, x)]['val'] = 'not eval'
コード例 #8
0
def auxGrid(freq1, phase1, freq2, phase2):
    return utils.grid(img_fit.shape, [a1, a2], [freq1, freq2],
                      [phase1, phase2], width)
コード例 #9
0
directions = np.rad2deg(
    np.arctan([(y2 - y1) / ((x2 - x1) + 0.001)
               for (x1, y1), (x2, y2) in lines]))
directions = np.where(directions < 0, directions + 180, directions)
hist = np.histogram(directions, range=[0, 180], bins=180)
sort_indexes = np.argsort(hist[0])
hist = hist[0][sort_indexes], hist[1][sort_indexes]

plt.figure()
plt.bar(hist[1], hist[0])

a1, a2 = hist[1][-2:]
print(" - Ângulos mais frequentes: " + str(a1) + ", " + str(a2))

print('Exemplo de grade com frequência e fase especificada')
plt.imshow(utils.grid(pimg.shape, [a1, a2], [0.02, 0.01], [1, 3], 3))
plt.show()

width = 5
img_fit = np.where(pimg == 1, width, -1 / width)


def auxGrid(freq1, phase1, freq2, phase2):
    return utils.grid(img_fit.shape, [a1, a2], [freq1, freq2],
                      [phase1, phase2], width)


def denormalize(x):
    min_freq = 0.0016521614890856475
    high = np.array([0.5, 500, 0.5, 500])
    low = np.array([min_freq, 0, min_freq, 0])
コード例 #10
0
def train(train_loader, model, criterion, optimizer, epoch, scheduler):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()
    end = time.time()

    prefetcher = data_prefetcher(train_loader)
    input, target = prefetcher.next()
    i = 0
    while input is not None:
        i += 1
        if args.prof >= 0 and i == args.prof:
            print("Profiling begun at iteration {}".format(i))
            torch.cuda.cudart().cudaProfilerStart()

        if args.prof >= 0:
            torch.cuda.nvtx.range_push("Body of iteration {}".format(i))

        adjust_learning_rate(scheduler, optimizer, epoch, i, len(train_loader))

        if args.grid:
            input = grid(input)

        # compute output
        if args.prof >= 0: torch.cuda.nvtx.range_push("forward")
        output = model(input)
        if args.prof >= 0: torch.cuda.nvtx.range_pop()
        loss = criterion(output, target)

        # compute gradient and do SGD step
        optimizer.zero_grad()

        if args.prof >= 0: torch.cuda.nvtx.range_push("backward")
        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
        if args.prof >= 0: torch.cuda.nvtx.range_pop()

        # for param in model.parameters():
        #     print(param.data.double().sum().item(), param.grad.data.double().sum().item())

        if args.prof >= 0: torch.cuda.nvtx.range_push("optimizer.step()")
        optimizer.step()
        if args.prof >= 0: torch.cuda.nvtx.range_pop()

        if i % args.print_freq == 0:
            # Every print_freq iterations, check the loss, accuracy, and speed.
            # For best performance, it doesn't make sense to print these metrics every
            # iteration, since they incur an allreduce and some host<->device syncs.

            # Measure accuracy
            prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

            # Average loss and accuracy across processes for logging
            if args.distributed:
                reduced_loss = reduce_tensor(loss.data)
                prec1 = reduce_tensor(prec1)
                prec5 = reduce_tensor(prec5)
            else:
                reduced_loss = loss.data

            # to_python_float incurs a host<->device sync
            losses.update(to_python_float(reduced_loss), input.size(0))
            top1.update(to_python_float(prec1), input.size(0))
            top5.update(to_python_float(prec5), input.size(0))

            torch.cuda.synchronize()
            batch_time.update((time.time() - end) / args.print_freq)
            end = time.time()

            if args.local_rank == 0:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Speed {3:.3f} ({4:.3f})\t'
                      'Loss {loss.val:.10f} ({loss.avg:.4f})\t'
                      'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                      'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                          epoch,
                          i,
                          len(train_loader),
                          args.world_size * args.batch_size / batch_time.val,
                          args.world_size * args.batch_size / batch_time.avg,
                          batch_time=batch_time,
                          loss=losses,
                          top1=top1,
                          top5=top5))

        if args.prof >= 0: torch.cuda.nvtx.range_push("prefetcher.next()")
        input, target = prefetcher.next()
        if args.prof >= 0: torch.cuda.nvtx.range_pop()

        # Pop range "Body of iteration {}".format(i)
        if args.prof >= 0: torch.cuda.nvtx.range_pop()

        if args.prof >= 0 and i == args.prof + 10:
            print("Profiling ended at iteration {}".format(i))
            torch.cuda.cudart().cudaProfilerStop()
            quit()