コード例 #1
0
def bessel_rotate(image_org, theta, mask = False, smooth = False, mode = 1):
    image = image_org.copy()
    if(mask):
        image = circle_mask(image, smooth, mode)
    Ib = np.zeros(image.shape)
    theta = to_radian(theta)
    s = (image.shape[0]-1)/2.
    x = np.linspace(-s, s, image.shape[1])
    y = np.linspace(-s, s, image.shape[0])
    
    xx, yy = np.meshgrid(x,y)
    
    rM = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]])
    for i in np.arange(-s,s+1):
        for j in np.arange(-s,s+1):
            new_x = np.dot(rM, np.array([i,j]))

            if(np.sum(abs(np.round(new_x,5))>s)):
                Ib[i+s,j+s] = 0
            else:
                R = np.sqrt((xx-new_x[1])**2 + (yy-new_x[0])**2)
                mask_R = (R == 0)
                Bess = np.zeros(R.shape)
                Bess[~mask_R] = scipy.special.j1(np.pi*R[~mask_R])*hann(R[~mask_R],image.shape[0]*mode)/(np.pi*R[~mask_R])
                Bess[mask_R] = 0.5
                Bess = Bess/np.sum(Bess)
                tmp = image*Bess
                Ib[i+s,j+s] = np.sum(tmp) #np.round(np.sum(tmp),10)
    return Ib
コード例 #2
0
def bessel_rotate_halton(image, theta, x1, y1):
    Ib = []
    theta = to_radian(theta)
    s = (image.shape[0]-1)/2.
    
    rM = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]])
    x = []
    for i in np.arange(-s,s+1):
        for j in np.arange(-s,s+1):
            x.append(np.dot(rM, np.array([i,j])))
    x = np.array(x)
    for idx in xrange(len(x1)):
        R = np.sqrt((x[:,1]-x1[idx])**2 + (x[:,0]-y1[idx])**2)
        mask_R = (R == 0)
        Bess = np.zeros(R.shape)
        Bess[~mask_R] = scipy.special.j1(np.pi*R[~mask_R])*hann(R[~mask_R],image.shape[0])/(np.pi*R[~mask_R])
        #Bess[~mask_R] = scipy.special.j1(np.pi*R[~mask_R])/(np.pi*R[~mask_R])
        Bess[mask_R] = 0.5
        Bess = Bess/np.sum(Bess)
        tmp = image.ravel()*Bess
        Ib.append(np.sum(tmp))
    return np.array(Ib)
コード例 #3
0
ファイル: config.py プロジェクト: littlelid/SpeechEnhancement
import numpy as np
from utils import hann, linear_2D_array


fft_size = 512         # fft size
fft_hop  = 8           # hop size in stft
fft_zp = 512           # zero padding in stft
analysis_window = np.concatenate((hann(fft_size), np.zeros(fft_zp)))
t_cut = 0.83           # length in [s] 用于消除无信号的片段

# 仿真参数
Fs = 8000
t0 = 1./(Fs*np.pi*1e-2)  # 开始时间
absorption = 0.1         # 墙面的吸收程度 0-1, 越小表述多径效应越明显
max_order_sim = 2
sigma2_n = 5e-7         # 环境噪声

# 麦克风阵列的几何结构
mic1 = np.array([2, 1.5])   # 坐标
M = 8                       # 麦克风数量
d = 0.08                    # 麦克风间隔 8cm
phi = 0.                    # 摆放角度为水平
max_order_design = 1        # 仿真相关的参数

Lg_t = 0.100                # 滤波器的窗口长度 时域上为0.1s
Lg = np.ceil(Lg_t*Fs)       # 滤波器的窗口长度 具体的阶数
delay = 0.050               # 仿真beamforming的延迟


N = 1024