コード例 #1
0
        outputs_cpu = outputs.data.cpu().numpy()

        lossL1 = criterionL1(outputs, targets)
        L1val_accum += lossL1.item()

        if i == 0:
            input_ndarray = inputs_cpu.cpu().numpy()[0]
            v_norm = (np.max(np.abs(input_ndarray[0, :, :]))**2 +
                      np.max(np.abs(input_ndarray[1, :, :]))**2)**0.5

            outputs_denormalized = data.denormalize(outputs_cpu[0], v_norm)
            targets_denormalized = data.denormalize(
                targets_cpu.cpu().numpy()[0], v_norm)
            utils.makeDirs(["results_train"])
            utils.imageOut("results_train/epoch{}_{}".format(epoch, i),
                           outputs_denormalized,
                           targets_denormalized,
                           saveTargets=True)

    # data for graph plotting
    L1_accum /= len(trainLoader)
    L1val_accum /= len(valiLoader)
    if saveL1:
        if epoch == 0:
            utils.resetLog(prefix + "L1.txt")
            utils.resetLog(prefix + "L1val.txt")
        utils.log(prefix + "L1.txt", "{} ".format(L1_accum), False)
        utils.log(prefix + "L1val.txt", "{} ".format(L1val_accum), False)

torch.save(netG.state_dict(), prefix + "modelG")
コード例 #2
0
        targets_denormalized_comp, outputs_denormalized_comp = targets_denormalized_comp.float(
        ).cuda(), outputs_denormalized_comp.float().cuda()

        outputs_dn.data.resize_as_(outputs_denormalized_comp).copy_(
            outputs_denormalized_comp)
        targets_dn.data.resize_as_(targets_denormalized_comp).copy_(
            targets_denormalized_comp)

        loss_dn = criterionLoss(outputs_dn, targets_dn)
        Lossval_dn_accum += loss_dn.item()

        # write output image, note - this is currently overwritten for multiple models
        os.chdir("./results_test/")
        utils.imageOut("%04d" % (i),
                       outputs_cpu,
                       targets_cpu,
                       normalize=False,
                       saveMontage=True)  # write normalized with error
        os.chdir("../")

    log(lf, "\n")
    Lossval_accum /= len(testLoader)
    lossPer_p_accum /= len(testLoader)
    lossPer_v_accum /= len(testLoader)
    lossPer_accum /= len(testLoader)
    Lossval_dn_accum /= len(testLoader)
    log(
        lf, "Loss percentage (p, v, combined): %f %%    %f %%    %f %% " %
        (lossPer_p_accum * 100, lossPer_v_accum * 100, lossPer_accum * 100))
    log(lf, "Loss error: %f" % (Lossval_accum))
    log(lf, "Denormalized error: %f" % (Lossval_dn_accum))