def params(self, modelfits): # reads in source finder output with pyfits.open(modelfits) as hdu: data = hdu[1].data tfile = tempfile.NamedTemporaryFile(suffix=".txt") tfile.flush() # writes a catalogue in a temporaty txt file with open(tfile.name, "w") as std: std.write("#format:name ra_rad dec_rad i emaj_r emin_r pa_r\n") model = Tigger.load(tfile.name) # open a tmp. file peak, total, area, loc, corr = [], [], [], [], [] for i in range(len(data)): flux = data["Total_flux"][i] dc_emaj, dc_emin = data["DC_Maj"][i], data["DC_Min"][i] ra, dec = data["RA"][i], data["DEC"][i] pa = data["DC_PA"][i] name = "SRC%d"%i peak_flux = data["Peak_flux"][i] posrd = ModelClasses.Position(numpy.deg2rad(ra), numpy.deg2rad(dec)) flux_I = ModelClasses.Polarization(flux, 0, 0, 0) if dc_emaj == 0 and dc_emin == 0: shape = None else: shape = ModelClasses.Gaussian(numpy.deg2rad(dc_emaj), numpy.deg2rad(dc_emin), numpy.deg2rad(pa)) srs = SkyModel.Source(name, posrd, flux_I, shape=shape) # using convolved maj and min for reliability estimate emaj, emin = data["Maj"][i], data["Min"][i] # area: find ex and ey if are 0 assign beam size if emaj or emin == 0: srcarea = math.pi * (numpy.rad2deg(self.bmaj)) * pow(3600.0, 2) *\ (numpy.rad2deg(self.bmin)) if emaj and emin > 0: srcarea = emaj * emin * math.pi * pow(3600.0, 2) # arcsecond # only accepts sources with flux > 0 and not nan RA and DEC # and local variance pos = [self.wcs.wcs2pix(*(ra, dec))][0] #positions from deg to pixel with pyfits.open(self.negimage) as hdu: negdata = utils.image_data( hdu[0].data ) if flux > 0 and peak_flux > 0 and not math.isnan(float(ra))\ and not math.isnan(float(dec)): local = utils.compute_local_variance(negdata, pos, self.locstep) srs.setAttribute("local_variance", local) if not math.isnan(float(local)) or local > 0: if self.psfname: pdata, psf = utils.compute_psf_correlation(self.imagename, self.psfname, pos, self.cfstep) if len(pdata) == len(psf): c_region = numpy.corrcoef((pdata, psf)) cf = (numpy.diag((numpy.rot90(c_region))**2) .sum())**0.5/2**0.5 srs.setAttribute("correlation_factor", cf) corr.append(cf) model.sources.append(srs) peak.append(peak_flux) total.append(flux) area.append(srcarea) loc.append(local) else: model.sources.append(srs) peak.append(peak_flux) total.append(flux) area.append(srcarea) loc.append(local) labels = dict(size=(0, "Log$_{10}$(Source area)"), peak=(1, "Log$_{10}$( Peak flux [Jy] )"), tot=(2, "Log$_{10}$( Total flux [Jy] )")) if self.do_psf_corr: labels.update( {"coeff":(len(labels), "Log$_{10}$ (CF)")}) if self.do_local_var: labels.update( {"local": (len(labels), "Log$_{10}$(Local Variance)")}) if self.nearsources: labels.update( {"near": (len(labels), "Log$_{10}$(Near Sources)")}) nsrc = len(model.sources) out = numpy.zeros([nsrc, len(labels)]) # returning parameters for i, src in enumerate(model.sources): ra, dec = src.pos.ra, src.pos.dec near = model.getSourcesNear(ra, dec, 5 * self.bmaj) nonear = len(near) if self.nearsources: src.setAttribute("neibours", nonear) if self.do_psf_corr and self.do_local_var and self.nearsources: out[i,...] = area[i], peak[i], total[i], corr[i], loc[i], nonear elif self.do_psf_corr and self.do_local_var and not self.nearsources: out[i,...] = area[i], peak[i], total[i] , corr[i], loc[i] elif self.do_psf_corr and self.nearsources and not self.do_local_var: out[i,...] = area[i], peak[i], total[i] , corr[i], nonear elif not self.do_psf_corr and self.do_local_var and self.nearsources: out[i,...] = area[i], peak[i], total[i] , loc[i], nonear elif self.do_psf_corr and not self.do_local_var and not self.nearsources: out[i,...] = area[i], peak[i], total[i] , corr[i] elif not self.do_psf_corr and self.do_local_var and not self.nearsources: out[i,...] = area[i], peak[i], total[i] , loc[i] elif not self.do_psf_corr and not self.do_local_var and self.nearsources: out[i,...] = area[i], peak[i], total[i] , nonear else: out[i,...] = area[i], peak[i], total[i] # removes the rows with 0s removezeros = (out == 0).sum(1) output = out[removezeros <= 0, :] return model, numpy.log10(output), labels
def __init__(self, imagename, psfname, pmodel, nmodel, local_step=10, snr_thresh=40, high_corr_thresh=0.5, negdetec_region=10, negatives_thresh=5, phasecenter_excl_radius=None, prefix=None, loglevel=0): """ Determines sources that require direction-dependent (DD) calibration solutions. psfname: PSF fits data pmodel: Model of the positive image. nmodel: Model of the negative image header: The header of the input image snr_thresh: float, optional. Default is 40. Any source with 40 x the minimum SNR. high_corr_thresh: float, optional. Default is 0.5. Sources of high PSF correlation have correlation above 0.5. negdetec_region: float, optional. Default is 10. Region to lookup for negative detections around. In beam size. negative_thresh: float, optional. Default is 5. The number of nearby negative detections. Sources with number > 5 require direction dependent (DD) calibration solutions. phasecenter_excl_region: float (in degrees), optional. A radius from the phase center (in beam sizes) to exclude the sources from the evaluation. prefix: str, optional. Sets a prefix to the output directory. loglevel: int, optional. Default 0. Python logging. 0, 1, 2, 3 for info, debug, error and critical, respectively. """ self.loglevel = loglevel self.prefix = prefix self.log = utils.logger(self.loglevel, prefix=self.prefix) #image and psf image self.pmodel = pmodel self.nmodel = nmodel self.psfname = psfname self.log.info(" Loading image data") # tags self.dd_tag = "dE" # thresholds self.snr_factor = snr_thresh #self.localthresh = local_thresh self.corrthresh = high_corr_thresh self.negthresh = negatives_thresh with pyfits.open(imagename) as hdu: self.hdr = hdu[0].header self.data = utils.image_data(hdu[0].data) self.wcs = WCS(self.hdr, mode="pyfits") self.locstep = local_step #regions self.phaserad = phasecenter_excl_radius # radius from the phase center self.negregion = negdetec_region # region to look for negatives # conversion self.bmaj = self.hdr["BMAJ"] # in degrees self.ra0 = numpy.deg2rad(self.hdr["CRVAL1"]) self.dec0 = numpy.deg2rad(self.hdr["CRVAL2"])
def __init__(self, imagename, psfname=None, sourcefinder_name='pybdsm', makeplots=True, do_psf_corr=True, do_local_var=True, psf_corr_region=5, local_var_region=10, rel_excl_src=None, pos_smooth=2, neg_smooth=2, loglevel=0, thresh_pix=5, thresh_isl=3, neg_thresh_isl=3, neg_thresh_pix=5, reset_rel=None, prefix=None, do_nearsources=False, savefits=False, increase_beam_cluster=False, savemask_pos=False, savemask_neg=False, **kw): """ Takes in image and extracts sources and makes reliability estimations.. imagename: Fits image psfname: PSF fits image, optional. sourcefinder_name: str, optional. Default 'pybdsm'. Uses source finder specified. makeplots: bool, optional. Default is True. Make reliability plots. do_psf_corr : bool, optional. Default True. If True, PSF correlation will be added as an extra parameter for density estimations. NB: the PSF fits image must be provided. do_local_var : bool, optional. Default is True. If True, adds local variance as an extra parameter, for density estimations. do_nearsources: boolean. Default is False. If true it adds number of nearest neighnours as an extra parameter. It looks for sources around 5 beam sizes. psf_corr_region : int, optional. Default value is 5. Data size to correlate around a source, in beam sizes. local_var_region: int, optional. Default 10. Data size to compute the local variance in beam sizes. rel_excl_src : floats, optional. Default is None. Excludes sources in a specified region e.g ra, dec, radius in degrees. For 2 regions: ra1, dec1, radius1: ra2, dec2, radius2, etc. pos_smooth : float, optional. Default 2. Masking threshold for the positive image. For default value 2, data peaks < 2 * image noise are masked. neg_smooth : float, optional. Default 2. Similar to pos_smooth but applied to the negative image. thresh_isl : float, optional. Default is 3. Threshold for forming islands in the positive image thresh_pix : float, optional. Default is 5. Threshold for model fitting, in positive image. neg_thresh_isl : float, optional. Default is 3. Simialr to thresh_isl but for negative image. neg_thresh_pix : float, optional. Default is 5. Similar to thresh_pix but for negative image. savefits: boolean. Default is False. If True a negative image is saved. reset_rel: boolean. Default is False. If true then sources with correlation < 0.002 and rel >0.60 have their reliabilities set to 0. increase_beam_cluster: boolean, optional. If True, sources groupings will be increase by 20% the beam size. If False, the actual beam size will be used. Default is False. savemask_pos: boolean, optional. If true the mask applied on the positive side of an image after smoothing is saved. savemask_neg: Similar to savemask_pos but for the negative side of an image. loglevel : int, optional. Default is 0. Provides Pythonlogging options, 0, 1, 2 and 3 are for info, debug, error and critial respectively. kw : kward for source extractions. Should be a mapping e.g kw['thresh_isl'] = 2.0 or kw['do_polarization'] = True """ self.prefix = prefix # log level self.loglevel = loglevel self.log = utils.logger(self.loglevel, prefix=self.prefix) # image, psf image self.imagename = imagename self.psfname = psfname # reading imagename data imagedata, self.wcs, self.header, self.pixelsize =\ utils.reshape_data(self.imagename, prefix=self.prefix) self.imagedata = numpy.array(imagedata, dtype=numpy.float32) self.image2by2 = numpy.array(utils.image_data(imagedata, prefix), dtype=numpy.float32) self.bmaj = numpy.deg2rad(self.header["BMAJ"]) # boolean optionals self.makeplots = makeplots self.do_local_var = do_local_var self.nearsources = do_nearsources self.do_psf_corr = do_psf_corr self.savemaskpos = savemask_pos self.savemaskneg = savemask_neg self.savefits = savefits self.derel = reset_rel if not self.psfname: self.log.info(" No psf provided, do_psf_corr is set to False.") self.do_psf_corr = False if self.psfname: psfdata, self.psfhdr = utils.open_psf_image(self.psfname) self.psfdata = utils.image_data(psfdata, prefix) # computing negative noise self.noise, self.mean = utils.negative_noise(self.imagedata, self.prefix) #here is 2X2 data here self.log.info(" The negative noise is %e Jy/beam"%self.noise) if self.noise == 0: self.log.debug(" The negative noise is 0, check image") # source finder initialization self.sourcefinder_name = sourcefinder_name self.log.info(" Using %s source finder to extract the sources."% self.sourcefinder_name) self.negimage = self.prefix + "_negative.fits" negativedata = utils.invert_image( self.imagename, self.imagedata, self.header, self.negimage, prefix) self.negimage2by2 = numpy.array(utils.image_data(negativedata, prefix), dtype=numpy.float32) self.negativedata = numpy.array(negativedata, numpy.float32) # smoothing factors self.pos_smooth = pos_smooth self.neg_smooth = neg_smooth # region to evaluate self.corrstep = psf_corr_region self.localstep = local_var_region self.radiusrm = rel_excl_src self.do_beam = increase_beam_cluster beam_pix = int(round(numpy.rad2deg(self.bmaj)/self.pixelsize)) self.locstep = self.localstep * beam_pix self.cfstep = self.corrstep * beam_pix self.bmin, self.bpa = self.header["BMIN"], self.header["BPA"] self.opts_pos = {} if self.do_beam: bmaj = self.header["BMAJ"] self.opts_pos["beam"] = (1.2*bmaj, 1.2*self.bmin, self.bpa) # Pybdsm or source finder fitting thresholds self.thresh_isl = thresh_isl self.thresh_pix = thresh_pix self.opts_pos = dict(thresh_pix=self.thresh_pix, thresh_isl=self.thresh_isl) self.opts_pos.update(kw) self.opts_neg = {} self.neg_thresh_isl = neg_thresh_isl self.neg_thresh_pix = neg_thresh_pix self.opts_neg["thresh_isl"] = self.neg_thresh_isl self.opts_neg["thresh_pix"] = self.neg_thresh_pix
def params(self, modelfits): # reads in source finder output with pyfits.open(modelfits) as hdu: data = hdu[1].data tfile = tempfile.NamedTemporaryFile(suffix=".txt") tfile.flush() # writes a catalogue in a temporaty txt file with open(tfile.name, "w") as std: std.write("#format:name ra_rad dec_rad i emaj_r emin_r pa_r\n") model = Tigger.load(tfile.name) # open a tmp. file peak, total, area, loc, corr = [], [], [], [], [] for i in range(len(data)): flux = data["Total_flux"][i] dc_emaj, dc_emin = data["DC_Maj"][i], data["DC_Min"][i] ra, dec = data["RA"][i], data["DEC"][i] pa = data["DC_PA"][i] name = "SRC%d" % i peak_flux = data["Peak_flux"][i] posrd = ModelClasses.Position(numpy.deg2rad(ra), numpy.deg2rad(dec)) flux_I = ModelClasses.Polarization(flux, 0, 0, 0) if dc_emaj == 0 and dc_emin == 0: shape = None else: shape = ModelClasses.Gaussian(numpy.deg2rad(dc_emaj), numpy.deg2rad(dc_emin), numpy.deg2rad(pa)) srs = SkyModel.Source(name, posrd, flux_I, shape=shape) # using convolved maj and min for reliability estimate emaj, emin = data["Maj"][i], data["Min"][i] # area: find ex and ey if are 0 assign beam size if emaj or emin == 0: srcarea = math.pi * (numpy.rad2deg(self.bmaj)) * pow(3600.0, 2) *\ (numpy.rad2deg(self.bmin)) if emaj and emin > 0: srcarea = emaj * emin * math.pi * pow(3600.0, 2) # arcsecond # only accepts sources with flux > 0 and not nan RA and DEC # and local variance pos = [self.wcs.wcs2pix(*(ra, dec)) ][0] #positions from deg to pixel with pyfits.open(self.negimage) as hdu: negdata = utils.image_data(hdu[0].data) if flux > 0 and peak_flux > 0 and not math.isnan(float(ra))\ and not math.isnan(float(dec)): local = utils.compute_local_variance(negdata, pos, self.locstep) srs.setAttribute("local_variance", local) if not math.isnan(float(local)) or local > 0: if self.psfname: pdata, psf = utils.compute_psf_correlation( self.imagename, self.psfname, pos, self.cfstep) if len(pdata) == len(psf): c_region = numpy.corrcoef((pdata, psf)) cf = (numpy.diag((numpy.rot90(c_region))** 2).sum())**0.5 / 2**0.5 srs.setAttribute("correlation_factor", cf) corr.append(cf) model.sources.append(srs) peak.append(peak_flux) total.append(flux) area.append(srcarea) loc.append(local) else: model.sources.append(srs) peak.append(peak_flux) total.append(flux) area.append(srcarea) loc.append(local) labels = dict(size=(0, "Log$_{10}$(Source area)"), peak=(1, "Log$_{10}$( Peak flux [Jy] )"), tot=(2, "Log$_{10}$( Total flux [Jy] )")) if self.do_psf_corr: labels.update({"coeff": (len(labels), "Log$_{10}$ (CF)")}) if self.do_local_var: labels.update( {"local": (len(labels), "Log$_{10}$(Local Variance)")}) if self.nearsources: labels.update({"near": (len(labels), "Log$_{10}$(Near Sources)")}) nsrc = len(model.sources) out = numpy.zeros([nsrc, len(labels)]) # returning parameters for i, src in enumerate(model.sources): ra, dec = src.pos.ra, src.pos.dec near = model.getSourcesNear(ra, dec, 5 * self.bmaj) nonear = len(near) if self.nearsources: src.setAttribute("neibours", nonear) if self.do_psf_corr and self.do_local_var and self.nearsources: out[i, ...] = area[i], peak[i], total[i], corr[i], loc[i], nonear elif self.do_psf_corr and self.do_local_var and not self.nearsources: out[i, ...] = area[i], peak[i], total[i], corr[i], loc[i] elif self.do_psf_corr and self.nearsources and not self.do_local_var: out[i, ...] = area[i], peak[i], total[i], corr[i], nonear elif not self.do_psf_corr and self.do_local_var and self.nearsources: out[i, ...] = area[i], peak[i], total[i], loc[i], nonear elif self.do_psf_corr and not self.do_local_var and not self.nearsources: out[i, ...] = area[i], peak[i], total[i], corr[i] elif not self.do_psf_corr and self.do_local_var and not self.nearsources: out[i, ...] = area[i], peak[i], total[i], loc[i] elif not self.do_psf_corr and not self.do_local_var and self.nearsources: out[i, ...] = area[i], peak[i], total[i], nonear else: out[i, ...] = area[i], peak[i], total[i] # removes the rows with 0s removezeros = (out == 0).sum(1) output = out[removezeros <= 0, :] return model, numpy.log10(output), labels