コード例 #1
0
def dec(x, start_res, end_res, scope='Decoder'):
    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
        x = ops.dense('fc1', x, fn(4) * 4 * 4, 'NHWC')
        x = tf.reshape(x, [-1, 4, 4, fn(4)])
        res = 8
        prev_x = None
        while res <= end_res:
            prev_x = x
            x = block_up(x, fn(res), 3, rname(res))
            res *= 2
        res = res // 2

        if res > start_res:
            t = tf.get_variable(
                rname(res) + '_t',
                shape=[],
                collections=[tf.GraphKeys.GLOBAL_VARIABLES, "lerp"],
                dtype=tf.float32,
                initializer=tf.zeros_initializer(),
                trainable=False)
            x1 = ops.to_rgb('rgb_' + rname(res // 2), prev_x, 'NHWC')
            x1 = ops.upscale2d(x1, 'NHWC')
            x2 = ops.to_rgb('rgb_' + rname(res), x, 'NHWC')
            x = ops.lerp_clip(x1, x2, t)
        else:
            x = ops.to_rgb('rgb_' + rname(res), x, "NHWC")

        x_shape = utils.int_shape(x)
        assert (end_res == x_shape[1])
        assert (end_res == x_shape[2])
        return x
コード例 #2
0
def pixel_norm(x, data_format, epsilon=1e-8):
    with tf.variable_scope('PixelNorm'):
        shape = utils.int_shape(x)
        if len(shape) == 2:
            axis = 1
        else:
            axis = 3 if data_format == 'NHWC' else 1
        return x * tf.rsqrt(
            tf.reduce_mean(tf.square(x), axis=axis, keepdims=True) + epsilon)
コード例 #3
0
 def squeeze(self, x):
     # x.shape = [N, d, n, 2]
     N, d, n, _ = int_shape(x)
     return tf.reshape(x, [
         N,
         d // self.f1,
         n // self.f2,
         2 * self.f1 * self.f2,
     ])
コード例 #4
0
def squash(x, data_format, epsilon=1e-8):
    with tf.variable_scope('Squash'):
        shape = utils.int_shape(x)
        if len(shape) == 2:
            axis = 1
        else:
            axis = 3 if data_format == 'NHWC' else 1
        squared_norm = tf.reduce_sum(tf.square(x), axis=axis, keepdims=True)
        scalar_factor = squared_norm / (
            1 + squared_norm) * tf.rsqrt(squared_norm + epsilon)
        return x * scalar_factor
コード例 #5
0
ファイル: models.py プロジェクト: omidsakhi/progressive_gan
def generator(x,
              last_layer_resolution,
              cfg,
              is_training=True,
              scope='Generator'):
    def rname(resolution):
        return str(resolution) + 'x' + str(resolution)

    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
        with tf.variable_scope("4x4"):
            fn4 = cfg.resolution_to_filt_num[4]
            x = ops.pixel_norm(x, cfg.data_format)
            x = ops.dense('dense', x, 4 * 4 * fn4, cfg.data_format)
            if cfg.data_format == 'NHWC':
                x = tf.reshape(x, [-1, 4, 4, fn4])
            else:
                x = tf.reshape(x, [-1, fn4, 4, 4])
            x = ops.leaky_relu(x)
            x = ops.pixel_norm(x, cfg.data_format)
            x = ops.conv2d('conv', x, fn4, 3, cfg.data_format)
            x = ops.leaky_relu(x)
            x = ops.pixel_norm(x, cfg.data_format)
        resolution = 8
        prev_x = None
        while resolution <= last_layer_resolution:
            filt_num = cfg.resolution_to_filt_num[resolution]
            prev_x = x
            x = gblock(rname(resolution), x, filt_num, cfg.data_format)
            resolution *= 2
        resolution = resolution // 2
        if resolution > cfg.starting_resolution:
            t = tf.get_variable(
                rname(resolution) + '_t',
                shape=[],
                collections=[tf.GraphKeys.GLOBAL_VARIABLES, "lerp"],
                dtype=tf.float32,
                initializer=tf.zeros_initializer(),
                trainable=False)
            x1 = ops.to_rgb('to_rgb_' + rname(resolution // 2), prev_x,
                            cfg.data_format)
            x1 = ops.upscale2d(x1, cfg.data_format)
            x2 = ops.to_rgb('to_rgb_' + rname(resolution), x, cfg.data_format)
            x = ops.lerp_clip(x1, x2, t)
        else:
            x = ops.to_rgb('to_rgb_' + rname(resolution), x, cfg.data_format)
        x_shape = utils.int_shape(x)
        assert (resolution == x_shape[1 if cfg.data_format == 'NHWC' else 3])
        assert (resolution == x_shape[2])
        return x
コード例 #6
0
ファイル: models.py プロジェクト: omidsakhi/progressive_gan
def discriminator(x, resolution, cfg, is_training=True, scope='Discriminator'):
    assert (cfg.data_format == 'NCHW' or cfg.data_format == 'NHWC')

    def rname(resolution):
        return str(resolution) + 'x' + str(resolution)

    def fmap(resolution):
        return cfg.resolution_to_filt_num[resolution]

    x_shape = utils.int_shape(x)
    assert (resolution == x_shape[1 if cfg.data_format == 'NHWC' else 3])
    assert (resolution == x_shape[2])
    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
        if resolution > cfg.starting_resolution:
            x1 = ops.downscale2d(x, cfg.data_format)
            x1 = ops.from_rgb('from_rgb_' + rname(resolution // 2), x1,
                              fmap(resolution // 2), cfg.data_format)
            x2 = ops.from_rgb('from_rgb_' + rname(resolution), x,
                              fmap(resolution // 2), cfg.data_format)
            t = tf.get_variable(
                rname(resolution) + '_t',
                shape=[],
                dtype=tf.float32,
                collections=[tf.GraphKeys.GLOBAL_VARIABLES, "lerp"],
                initializer=tf.zeros_initializer(),
                trainable=False)
            num_filters = [fmap(resolution), fmap(resolution // 2)]
            x2 = dblock(rname(resolution), x2, num_filters, cfg.data_format)
            x = ops.lerp_clip(x1, x2, t)
            resolution = resolution // 2
        else:
            x = ops.from_rgb('from_rgb_' + rname(resolution), x,
                             fmap(resolution), cfg.data_format)
        while resolution >= 4:
            if resolution == 4:
                x = ops.minibatch_stddev_layer(x, cfg.data_format)
            num_filters = [fmap(resolution), fmap(resolution // 2)]
            x = dblock(rname(resolution), x, num_filters, cfg.data_format)
            resolution = resolution // 2

        x = ops.dense('2x2', x, fmap(resolution), cfg.data_format)
        x = ops.leaky_relu(x)

        x = ops.dense('output', x, 1, cfg.data_format)

        return x
コード例 #7
0
def apply_bias(x, data_format):
    shape = utils.int_shape(x)
    assert (len(shape) == 2 or len(shape) == 4)
    if len(shape) == 2:
        channels = shape[1]
    else:
        channels = shape[3] if data_format == 'NHWC' else shape[1]
    b = tf.get_variable('bias',
                        shape=[channels],
                        initializer=tf.initializers.zeros())
    b = tf.cast(b, x.dtype)
    if len(x.shape) == 2:
        return x + b
    else:
        if data_format == 'NHWC':
            return x + tf.reshape(b, [1, 1, 1, -1])
        else:
            return x + tf.reshape(b, [1, -1, 1, 1])
コード例 #8
0
def make_pixeldefend(sess, x, pixelcnn_out):
    l = pixelcnn_out
    xs = int_shape(
        x)  # true image (i.e. labels) to regress to, e.g. (B,32,32,3)
    ls = int_shape(l)  # predicted distribution, e.g. (B,32,32,100)
    nr_mix = int(
        ls[-1] /
        10)  # here and below: unpacking the params of the mixture of logistics
    logit_probs = l[:, :, :, :nr_mix]
    l = tf.reshape(l[:, :, :, nr_mix:], xs + [nr_mix * 3])
    means = l[:, :, :, :, :nr_mix]
    log_scales = tf.maximum(l[:, :, :, :, nr_mix:2 * nr_mix], -7.)
    coeffs = tf.nn.tanh(l[:, :, :, :, 2 * nr_mix:3 * nr_mix])
    x_ = tf.reshape(x, xs + [1]) + tf.zeros(
        xs + [nr_mix]
    )  # here and below: getting the means and adjusting them based on preceding sub-pixels
    m2 = tf.reshape(
        means[:, :, :, 1, :] + coeffs[:, :, :, 0, :] * x_[:, :, :, 0, :],
        [xs[0], xs[1], xs[2], 1, nr_mix])
    m3 = tf.reshape(
        means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * x_[:, :, :, 0, :] +
        coeffs[:, :, :, 2, :] * x_[:, :, :, 1, :],
        [xs[0], xs[1], xs[2], 1, nr_mix])
    means = tf.concat([
        tf.reshape(means[:, :, :, 0, :], [xs[0], xs[1], xs[2], 1, nr_mix]), m2,
        m3
    ], 3)

    # B is batch size (1)
    # H and W are height and width (32)
    # C is channels (3)
    # M is number of mixtures (10)
    # shapes are (B, H, W, C, M)

    eval_pts = tf.constant(
        np.linspace(-1 + 1. / 256, 1 - 1. / 256, 255, dtype=np.float32))
    eval_pts = tf.reshape(eval_pts, (1, 1, 1, 1, 1, -1))
    eval_pts = tf.tile(eval_pts, (xs[0], xs[1], xs[2], 3, nr_mix, 1))

    log_scales = tf.reshape(log_scales, (xs[0], xs[1], xs[2], 3, nr_mix, 1))
    scales = tf.exp(log_scales)
    scales = tf.tile(scales, (1, 1, 1, 1, 1, 255))

    means = tf.reshape(means, (xs[0], xs[1], xs[2], 3, nr_mix, 1))
    means = tf.tile(means, (1, 1, 1, 1, 1, 255))

    evals = tf.sigmoid((eval_pts - means) / scales)

    eval_upper = tf.concat(
        [evals, tf.ones((xs[0], xs[1], xs[2], 3, nr_mix, 1))], axis=5)
    eval_lower = tf.concat(
        [tf.zeros((xs[0], xs[1], xs[2], 3, nr_mix, 1)), evals], axis=5)

    eval_diffs = eval_upper - eval_lower

    probs_tiled = tf.nn.softmax(tf.tile(
        tf.reshape(logit_probs, (xs[0], xs[1], xs[2], 1, nr_mix, 1)),
        (1, 1, 1, 3, 1, 256)),
                                axis=4)

    probs = tf.reduce_sum(eval_diffs * probs_tiled, axis=4)

    # input image has elements in [0, 255]
    # epsilon is 0-255
    def pixeldefend(input_image, eps=16):
        purified = 2.0 * np.copy(
            input_image) / 255.0 - 1.0  # rescale to [-1, 1]

        for yi in range(32):
            for xi in range(32):
                # we have to do this one channel at a time, due to channel-wise dependencies
                for ki in range(3):
                    p = sess.run(probs, {x: [purified]})
                    sub = p[0, yi, xi, ki]

                    curr_val = np.floor(255.0 * (purified[yi, xi, ki] + 1) /
                                        2.0)
                    feasible = range(int(max(curr_val - eps, 0)),
                                     int(min(curr_val + eps, 255) + 1))

                    best_p = -1
                    best_idx = None
                    for i in feasible:
                        if sub[i] > best_p:
                            best_p = sub[i]
                            best_idx = i

                    purified[yi, xi, ki] = 2.0 * best_idx / 255.0 - 1.0

        return 255.0 * ((purified + 1.0) / 2.0)

    return pixeldefend
コード例 #9
0
def make_pixeldefend(sess, x, pixelcnn_out):
    l = pixelcnn_out
    xs = int_shape(x) # true image (i.e. labels) to regress to, e.g. (B,32,32,3)
    ls = int_shape(l) # predicted distribution, e.g. (B,32,32,100)
    nr_mix = int(ls[-1] / 10) # here and below: unpacking the params of the mixture of logistics
    logit_probs = l[:,:,:,:nr_mix]
    l = tf.reshape(l[:,:,:,nr_mix:], xs + [nr_mix*3])
    means = l[:,:,:,:,:nr_mix]
    log_scales = tf.maximum(l[:,:,:,:,nr_mix:2*nr_mix], -7.)
    coeffs = tf.nn.tanh(l[:,:,:,:,2*nr_mix:3*nr_mix])
    x_ = tf.reshape(x, xs + [1]) + tf.zeros(xs + [nr_mix]) # here and below: getting the means and adjusting them based on preceding sub-pixels
    m2 = tf.reshape(means[:,:,:,1,:] + coeffs[:, :, :, 0, :] * x_[:, :, :, 0, :], [xs[0],xs[1],xs[2],1,nr_mix])
    m3 = tf.reshape(means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * x_[:, :, :, 0, :] + coeffs[:, :, :, 2, :] * x_[:, :, :, 1, :], [xs[0],xs[1],xs[2],1,nr_mix])
    means = tf.concat([tf.reshape(means[:,:,:,0,:], [xs[0],xs[1],xs[2],1,nr_mix]), m2, m3],3)

    # B is batch size (1)
    # H and W are height and width (32)
    # C is channels (3)
    # M is number of mixtures (10)
    # shapes are (B, H, W, C, M)

    eval_pts = tf.constant(np.linspace(-1+1./256, 1-1./256, 255, dtype=np.float32))
    eval_pts = tf.reshape(eval_pts, (1, 1, 1, 1, 1, -1))
    eval_pts = tf.tile(eval_pts, (xs[0],xs[1],xs[2],3,nr_mix,1))

    log_scales = tf.reshape(log_scales, (xs[0],xs[1],xs[2],3,nr_mix,1))
    scales = tf.exp(log_scales)
    scales = tf.tile(scales, (1, 1, 1, 1, 1, 255))

    means = tf.reshape(means, (xs[0],xs[1],xs[2],3,nr_mix,1))
    means = tf.tile(means, (1, 1, 1, 1, 1, 255))

    evals = tf.sigmoid((eval_pts - means) / scales)

    eval_upper = tf.concat([evals, tf.ones((xs[0],xs[1],xs[2],3,nr_mix,1))], axis=5)
    eval_lower = tf.concat([tf.zeros((xs[0],xs[1],xs[2],3,nr_mix,1)), evals], axis=5)

    eval_diffs = eval_upper - eval_lower

    probs_tiled = tf.nn.softmax(
        tf.tile(tf.reshape(logit_probs, (xs[0],xs[1],xs[2],1,nr_mix,1)), (1,1,1,3,1,256)),
        axis=4
    )

    probs = tf.reduce_sum(eval_diffs * probs_tiled, axis=4)

    # input image has elements in [0, 255]
    # epsilon is 0-255
    def pixeldefend(input_image, eps=16):
        purified = 2.0*np.copy(input_image)/255.0 - 1.0 # rescale to [-1, 1]
        
        for yi in range(32):
            for xi in range(32):
                # we have to do this one channel at a time, due to channel-wise dependencies
                for ki in range(3):
                    p = sess.run(probs, {x: [purified]})
                    sub = p[0,yi,xi,ki]
                    
                    curr_val = np.floor(255.0*(purified[yi,xi,ki]+1)/2.0)
                    feasible = range(int(max(curr_val-eps, 0)), int(min(curr_val+eps, 255)+1))
                    
                    best_p = -1
                    best_idx = None
                    for i in feasible:
                        if sub[i] > best_p:
                            best_p = sub[i]
                            best_idx = i
                    
                    purified[yi,xi,ki] = 2.0*best_idx/255.0 - 1.0
                    
        return 255.0*((purified+1.0)/2.0)

    return pixeldefend
コード例 #10
0
def sample(mean, std):
    shape = utils.int_shape(mean)
    with tf.variable_scope('Sample'):
        n = tf.random_normal([shape[0], shape[1]])
    return mean + tf.multiply(n, std)
コード例 #11
0
 def unsqueeze(self, x):
     # x.shape = [N, d/f1, n/f2, 2*f1*f2]
     N, d_over_f1, n_over_f2, _ = int_shape(x)
     return tf.reshape(x, [N, d_over_f1 * self.f1, n_over_f2 * self.f2, 2])