コード例 #1
0
    def update(self, img, detections=None):
        if not detections:
            detections = self.detector.detect(img)
            for d in detections:
                cv2.rectangle(
                    img, (d.bbox.x, d.bbox.y),
                    (d.bbox.x + d.bbox.width, d.bbox.y + d.bbox.height),
                    (0, 0, 255), 3)

        if len(detections) > 0:
            location_weights = np.empty(len(detections), dtype=float)
            for idx, det in enumerate(detections):
                obs = np.array(
                    [det.bbox.x, det.bbox.y, det.bbox.width, det.bbox.height])
                location_weights[idx] = math.exp(
                    2.0 * (-1.0 +
                           utils.intersection_over_union(self.reference, obs)))

            psi = np.empty((len(self.states), len(detections)), dtype=float)
            for i, state in enumerate(self.states):
                for j, det in enumerate(detections):
                    obs = np.array([
                        det.bbox.x, det.bbox.y, det.bbox.width, det.bbox.height
                    ])
                    #print utils.intersection_over_union(state, obs)
                    psi[i, j] = location_weights[j] * math.exp(
                        2.0 *
                        (-1.0 + utils.intersection_over_union(state, obs)))

            tau = psi.sum(axis=0)
            self.weights = self.weights * (1 - self.DETECTION_RATE) + psi.sum(
                axis=1) / float(self.LAMBDA_C * self.PDF_C)
            self.resample()
コード例 #2
0
    def forward(self, predictions, target):
        predictions = predictions.reshape(-1, self.S, self.S,
                                          self.B * 5 + self.C)
        # Note: here we only have one targer. We compare both predicted box with the same x,y,w,h from the last five channels in targets
        iou_b1 = intersection_over_union(predictions[..., 21:25],
                                         target[..., 21:25])
        iou_b2 = intersection_over_union(predictions[..., 26:30],
                                         target[..., 21:25])
        ious = torch.cat([iou_b1.unsqueeze(0), iou_b2.unsqueeze(0)], dim=0)
        iou_maxes, bestbox_idx = torch.max(
            ious, dim=0
        )  # bestbox_idx is the index to indicate which box is response to predict
        exists_obj = target[..., 20].unsqueeze(
            3
        )  #to keep the third dimension. Is there an object is cell i? n*7*7*1

        #coord loss
        box_predictions = exists_obj * ((  #get the best box
            bestbox_idx * predictions[..., 26:30] +
            (1 - bestbox_idx) * predictions[
                ..., 21:
                25]  #bestbox_idx suppose to be 0 or 1, index to indicate whcih box to use 
        ))
        box_targets = exists_obj * target[..., 21:25]
        box_predictions[..., 2:4] = torch.sign(
            box_predictions[..., 2:4]) * torch.sqrt(
                torch.abs(box_predictions[..., 2:4] +
                          1e-6))  # handle possible negative values

        box_targets[..., 2:4] = torch.sqrt(box_targets[..., 2:4])
        # (N,S,S,4) -> (N*S*S, 4)
        box_loss = self.mse(
            torch.flatten(box_predictions, end_dim=-2),
            torch.flatten(box_targets, end_dim=-2),
        )

        #obj loss
        pred_box = (bestbox_idx * predictions[..., 25:26] +
                    (1 - bestbox_idx) * predictions[..., 20:21])
        obj_loss = self.mse(torch.flatten(exists_obj * pred_box),
                            torch.flatten(exists_obj * target[..., 20:21]))

        no_obj_loss = self.mse(
            torch.flatten((1 - exists_obj) * predictions[..., 25:26],
                          start_dim=1),
            torch.flatten((1 - exists_obj) * target[..., 20:21], start_dim=1))

        no_obj_loss += self.mse(
            torch.flatten((1 - exists_obj) * predictions[..., 20:21],
                          start_dim=1),
            torch.flatten((1 - exists_obj) * target[..., 20:21], start_dim=1))
        #class loss
        class_loss = self.mse(
            torch.flatten(exists_obj * predictions[..., :20], end_dim=-2),
            torch.flatten(exists_obj * target[..., :20], end_dim=-2))

        loss = (self.lambda_coord * box_loss + obj_loss +
                self.lambda_noobj * no_obj_loss + class_loss)
        return loss
コード例 #3
0
ファイル: loss.py プロジェクト: KC900201/Python_Learning
    def forward(self, predictions, target):
        predictions = predictions.reshape(-1, self.S, self.S, self.B,
                                          self.C + self.B * S)

        iou_b1 = intersection_over_union(predictions[..., 21:25],
                                         target[..., 21:25])
        iou_b2 = intersection_over_union(predictions[..., 26:30],
                                         target[..., 21:25])
        ious = torch.cat([iou_b1.unsqueeze(0), iou_b1.unsqueeze(0)], dim=0)
        iou_maxes, best_box = torch.max(ious, dim=0)
        exists_box = target[..., 20:21].unsqueeze(3)  #Iobj_i

        #       For Box Coordinates
        box_predictions = exists_box * (
            (best_box * predictions[..., 26:30] +
             (1 - best_box) * predictions[..., 21:25]))

        box_targets = exists_box * target[..., 21:25]

        box_predictions[..., 2:4] = torch.sign(
            box_predictions[..., 2:4]) * torch.sqrt(
                torch.abs(box_predictions[..., 2:4] + 1e-6))

        box_targets[..., 2:4] = torch.sqrt(box_targets[..., 2:4])

        # (N, S, S, 4) -> (N*S*S, 4)
        box_loss = self.mse(
            torch.flatten(box_predictions, end_dim=-2),
            torch.flatten(box_targets, end_dim=-2),
        )

        #       For Object Loss
        pred_box = (best_box * predictions[..., 25:26] +
                    (1 - best_box) * predictions[..., 20:21])
        # (N * S * S)
        object_loss = self.mse(torch.flatten(exists_box * pred_box),
                               torch.flatten(exists_box * target[..., 20:21]))
        #       For No Object Loss
        # (N, S, S, 1) -> (N, S * S)
        no_object_loss = self.mse(
            torch.flatten((1 - exists_box) * predictions[..., 20:21],
                          start_dim=1),
            torch.flatten((1 - exists_box) * target[..., 20:21], start_dim=1))

        no_object_loss += self.mse(
            torch.flatten((1 - exists_box) * predictions[..., 25:26],
                          start_dim=1),
            torch.flatten((1 - exists_box) * target[..., 20:21], start_dim=1))

        #       For Class Loss
        class_loss = self.mse(
            torch.flatten(exists_box * predictions[..., :20], end_dim=2),
            torch.flatten(exists_box * target[..., :20], end_dim=-2),
        )

        loss = (self.lambda_coord * box_loss + object_loss +
                self.lambda_noobj * no_object_loss + class_loss)

        return loss
コード例 #4
0
ファイル: loss.py プロジェクト: YanYan0716/YOLO
    def forward(self, predictions, target):
        predictions = predictions.reshape(-1, self.S, self.S,
                                          self.C + self.B * 5)
        # 计算预测框和真实框的iou
        iou_b1 = intersection_over_union(predictions[..., 21:25],
                                         target[..., 21:25])
        iou_b2 = intersection_over_union(predictions[..., 26:30],
                                         target[..., 21:25])

        ious = torch.cat([iou_b1.unsqueeze(0), iou_b2.unsqueeze(0)], dim=0)
        iou_maxes, bestbox = torch.max(ious, dim=0)  # 得到最合适的框
        exists_box = target[..., 20].unsqueeze(3)
        """
        对于每个grid box,最终有两个预测框,所以bestbox的取值只有0和1两种取值
        exists_box:取值为0或1,表示这里是否有真实框
        bestbox=0: 表示第一个框的预测是正确的,那么留下第一个框的值,
        bestbox=1:表示第二个框的预测是正确的,就留下第二个框的值
        box_prediction包含了(x, y, width, height)
        损失函数.png 红框
        """
        box_prediction = exists_box * (
            (bestbox * predictions[..., 26:30] +
             (1 - bestbox) * predictions[..., 21:25]))
        box_targets = exists_box * target[..., 21:25]
        # sign 判断数的正负号, 对w和h开根号
        box_prediction[..., 2:4] = torch.sign(box_prediction[..., 2:4]) * \
                                   torch.sqrt(torch.abs(box_prediction[..., 2:4]+ 1e-6 ))
        box_targets[..., 2:4] = torch.sqrt(box_targets[..., 2:4])
        box_loss = self.mse(torch.flatten(box_prediction, end_dim=-2),
                            torch.flatten(box_targets, end_dim=-2))
        """损失函数.png 蓝框 第一行"""
        pred_box = (bestbox * predictions[..., 25:26] +
                    (1 - bestbox) * predictions[..., 20:21])
        object_loss = self.mse(torch.flatten(exists_box * pred_box),
                               torch.flatten(exists_box * target[..., 20:21]))
        """
        损失函数.png 蓝框 第二行
        将没有物体的框筛选出来,和真实框做loss, 这里因为有两个预测框,所以要加两次
        """
        no_object_loss = self.mse(
            torch.flatten((1 - exists_box) * predictions[..., 20:21],
                          start_dim=1),
            torch.flatten((1 - exists_box) * target[..., 20:21]))
        no_object_loss += self.mse(
            torch.flatten((1 - exists_box) * predictions[..., 25:26],
                          start_dim=1),
            torch.flatten((1 - exists_box) * target[..., 20:21], start_dim=1))
        """损失函数.png 绿框"""
        class_loss = self.mse(
            torch.flatten(
                exists_box * predictions[..., :20],
                end_dim=-2,
            ), torch.flatten(exists_box * target[..., 20], end_dim=-2))

        loss = (self.lambda_coord * box_loss + object_loss +
                self.lambda_noobj * no_object_loss + class_loss)
        return loss
コード例 #5
0
    def forward(self, predictions, target):
        preds = predictions.reshape(-1, self.S, self.S, self.C + self.B * 5)

        #these are the two boxes per cell
        iou_b1 = intersection_over_union(
            preds[..., 21:25],
            target[..., 21:25])  #0-19 class probs, 21-24 4 bb vals
        iou_b2 = intersection_over_union(preds[..., 26:30],
                                         target[..., 21:25])  #26-29 bb vals
        ious = torch.cat([iou_b1.unsqueeze(0), iou_b2.unsqueeze(0)], dim=0)

        iou_maxes, bestbox = torch.max(ious, dim=0)
        exists_box = target[..., 20].unsqueeze(3)  #if box is in object i

        ##Box Coordinate Loss, coordinates are 2 and 3
        box_preds = exists_box * ((bestbox * preds[..., 26:30] +
                                   (1 - bestbox) * preds[..., 21:25]))
        print(target[:, 21:25])
        box_targets = exists_box * target[..., 21:25]
        box_preds[..., 2:4] = torch.sign(box_preds[..., 2:4]) * torch.sqrt(
            torch.abs(box_preds[..., 2:4] + 1e-6))

        box_targets[..., 2:4] = torch.sqrt(box_targets[..., 2:4])

        box_loss = self.mse(torch.flatten(box_preds, end_dim=-2),
                            torch.flatten(box_targets, end_dim=-2))

        ##Object Loss
        pred_box = (bestbox * preds[..., 25:26] +
                    (1 - bestbox) * preds[..., 20:21])

        object_loss = self.mse(torch.flatten(exists_box * pred_box),
                               torch.flatten(exists_box * target[..., 20:21]))

        #no object loss, take loss for both
        no_object_loss = self.mse(
            torch.flatten((1 - exists_box) * preds[..., 20:21], start_dim=1),
            torch.flatten((1 - exists_box) * preds[..., 20:21], start_dim=1))

        no_object_loss += self.mse(
            torch.flatten((1 - exists_box) * preds[..., 25:26], start_dim=1),
            torch.flatten((1 - exists_box) * preds[..., 25:26], start_dim=1))

        ##Class Loss
        class_loss = self.mse(
            torch.flatten(
                exists_box * preds[..., :20],
                end_dim=-2,
            ), torch.flatten(
                exists_box * target[..., :20],
                end_dim=-2,
            ))
        #total loss
        loss = self.lambda_coord * box_loss + object_loss + self.lambda_obj * no_object_loss + class_loss

        return loss
コード例 #6
0
    def forward(self, predictions, target):
        predictions = predictions.reshape(-1, self.S, self.S, self.C +
                                          self.B * 5)  # N , S , S , 30
        iou_b1 = intersection_over_union(
            predictions[..., self.C + 1:self.C + 5],
            target[..., self.C + 1:self.C + 5])  # num_examples , iou
        iou_b2 = intersection_over_union(
            predictions[..., self.C + 6:self.C + 10],
            target[..., self.C + 1:self.C + 5])  # num_examples , iou
        ious = torch.cat([iou_b1.unsqueeze(0), iou_b2.unsqueeze(0)], dim=0)  #
        iou_maxes, best_box = torch.max(ious, dim=0)
        exists_box = target[..., self.C].unsqueeze(3)
        box_targets = exists_box * target[..., self.C + 1:self.C + 5]
        box_predictions = exists_box * (
            (best_box * predictions[..., self.C + 6:self.C + 10] +
             (1 - best_box) * predictions[..., self.C + 1:self.C + 5]))
        box_predictions[..., 2:4] = torch.sign(
            box_predictions[..., 2:4]) * torch.sqrt(
                torch.abs(box_predictions[..., 2:4] + 1e-6))  #
        box_targets[..., 2:4] = torch.sqrt(box_targets[..., 2:4])
        box_loss = self.mse(torch.flatten(box_predictions, end_dim=-2),
                            torch.flatten(box_targets, end_dim=-2))
        # object loss (check if its exist)
        pred_box = (best_box * predictions[..., self.C + 5:self.C + 6] +
                    (1 - best_box) * predictions[..., self.C:self.C + 1])
        obj_loss = self.mse(
            torch.flatten(exists_box * pred_box),
            torch.flatten(exists_box * target[..., self.C:self.C + 1]))

        # class loss
        class_loss = self.mse(
            torch.flatten(exists_box * predictions[..., :self.C], end_dim=-2),
            torch.flatten(exists_box * target[..., :self.C], end_dim=-2))

        #no object loss (N,S*S*1)
        noobj_loss = self.mse(
            torch.flatten(
                (1 - exists_box) * predictions[..., self.C:self.C + 1],
                start_dim=1),
            torch.flatten((1 - exists_box) * target[..., self.C:self.C + 1],
                          start_dim=1))

        noobj_loss += self.mse(
            torch.flatten(
                (1 - exists_box) * predictions[..., self.C + 5:self.C + 6],
                start_dim=1),
            torch.flatten((1 - exists_box) * target[..., self.C:self.C + 1],
                          start_dim=1))
        # some all losses
        loss = (obj_loss + class_loss + self.lambda_coord * box_loss +
                self.lambda_noobj * noobj_loss)
        return loss
コード例 #7
0
    def forward(self, preds, target, anchors):
        obj = target[..., 0] == 1  # in paper this is Iobj_i
        noobj = target[..., 0] == 0  # in paper this is Inoobj_i
        #No object loss
        no_object_loss = self.bce((preds[..., 0:1][noobj]),
                                  (target[..., 0:1][noobj]))
        #object loss
        anchors = anchors.reshape(1, 3, 1, 1, 2)  #p_w * exp(t_w)
        box_preds = torch.cat([
            self.sigmoid(preds[..., 1:3]), anchors * torch.exp(preds[..., 3:5])
        ],
                              dim=-1)
        ious = intersection_over_union(box_preds[obj],
                                       target[..., 1:5][obj]).detach()

        object_loss = self.bce((preds[..., 0:1][obj]),
                               (ious * target[..., 0:1][obj]))
        #box coordinate loss
        preds[..., 1:3] = self.sigmoid(preds[..., 1:3])
        target[...,
               3:5] = torch.log(1e-16 + target[..., 3:5] / anchors)  #inverse
        box_loss = self.mse((preds[..., 1:5][obj]), (target[..., 1:5][obj]))

        #class loss
        class_loss = self.entropy((preds[..., 5:][obj]),
                                  (target[..., 5][obj].long()))

        return self.lambda_box * box_loss + self.lambda_obj * object_loss + self.lambda_noobj * no_object_loss + self.lambda_class * class_loss
コード例 #8
0
ファイル: loss.py プロジェクト: ankpan18/yolo
def custom_loss(y_true,y_pred):
###y_pred=[no. of images, 5 , 5 , 7] in which  7=>pc,x,y,w,h,c1,c2    5,5 are cells
  y_true_class=y_true[...,5:]
  y_pred_class=y_pred[...,5:]


  y_true_conf=y_true[...,0:1]
  y_pred_conf=y_pred[...,0:1]

  obj=y_true[...,0]==1            #true for cells which have objects
  noobj=y_true[...,0]==0          #true for cells which does not have objects

  #no obj loss
  noobj_loss=tf.reduce_mean(K.binary_crossentropy((y_true_conf[noobj]),(y_pred_conf[noobj]),from_logits=True))

  #obj loss
  box_pred=K.concatenate([K.sigmoid(y_pred_xy),(y_pred_wh)],axis=-1)
  ious=intersection_over_union(box_pred[obj],y_true[...,1:5][obj])
  obj_loss=tf.reduce_mean(K.binary_crossentropy((y_true_conf[obj]),(y_pred_conf[obj]),from_logits=True))

  #box cordinate loss
  box_loss=tf.reduce_mean(K.mean(K.square(K.concatenate([y_true[...,1:3],(y_true[...,3:5])])[obj]-K.concatenate([K.sigmoid(y_pred[...,1:3]),(y_pred[...,3:5])])[obj]), axis=-1))

  #class loss
  class_loss=tf.reduce_mean(K.categorical_crossentropy((y_true_class[obj]),(y_pred_class[obj]),from_logits=True))

  return ((0.8*noobj_loss)+(1.2*obj_loss)+(1*class_loss)+(5*box_loss)) 
コード例 #9
0
    def validate():
        """ Get loss over validation set """
        model.eval()
        e_loss = 0
        e_iou = 0

        with torch.no_grad():
            for iteration, (img, label) in enumerate(val_data_loader, 1):
                img = img.to(device)
                label = label.to(device)

                label_out = model(img)
                batch_loss = criterion(label_out, label.float())

                kernel_loss = \
                    inverse_gaussian_regularization(
                        model.contour_integration_layer.lateral_e.weight,
                        model.contour_integration_layer.lateral_i.weight
                    )

                total_loss = batch_loss + lambda1 * kernel_loss

                e_loss += total_loss.item()
                preds = (torch.sigmoid(label_out) > detect_thres)
                e_iou += utils.intersection_over_union(
                    preds.float(), label.float()).cpu().detach().numpy()

        e_loss = e_loss / len(val_data_loader)
        e_iou = e_iou / len(val_data_loader)

        # print("Val Loss = {:0.4f}, IoU={:0.4f}".format(e_loss, e_iou))

        return e_loss, e_iou
コード例 #10
0
 def forward(self, predictions, target, anchors):
     obj = target[..., 0] == 1
     noobj = target[..., 0] == 0
     no_object_loss = self.bce(
         (predictions[..., 0:1][noobj]),
         (target[..., 0:1][noobj]),
     )
     anchors = anchors.reshape(1, 3, 1, 1, 2)
     box_preds = torch.cat([
         self.sigmoid(predictions[..., 1:3]),
         torch.exp(predictions[..., 3:5]) * anchors
     ],
                           dim=-1)
     ious = intersection_over_union(box_preds[obj],
                                    target[..., 1:5][obj]).detach()
     object_loss = self.mse(self.sigmoid(predictions[..., 0:1][obj]),
                            ious * target[..., 0:1][obj])
     predictions[...,
                 1:3] = self.sigmoid(predictions[...,
                                                 1:3])  # x,y coordinates
     target[..., 3:5] = torch.log((1e-16 + target[..., 3:5] / anchors))
     box_loss = self.mse(predictions[..., 1:5][obj], target[..., 1:5][obj])
     class_loss = self.entropy(
         (predictions[..., 5:][obj]),
         (target[..., 5][obj].long()),
     )
     return (self.lambda_box * box_loss + self.lambda_obj * object_loss +
             self.lambda_noobj * no_object_loss +
             self.lambda_class * class_loss)
コード例 #11
0
    def forward(self, predictions, target, anchors):
        obj = target[..., 0] == 1
        noObj = target[..., 0] == 0

        # No object loss
        no_object_loss = self.BCE((predictions[..., 0:1][noObj]), (target[..., 0:1][noObj]),)

        # Object loss
        anchors = anchors.reshape(1, 3, 1, 1, 2)
        box_predictions = torch.cat([self.sigmoid(predictions[..., 1:3]), torch.exp(predictions[..., 3:5]) * anchors],dim=-1)
        ious = intersection_over_union(box_predictions[obj], target[..., 1:5][obj]).detach()
        object_loss = self.mean_square_error(self.sigmoid(predictions[..., 0:1][obj]), ious * target[..., 0:1][obj])

        # Box coordinates loss
        predictions[..., 1:3] = self.sigmoid(predictions[..., 1:3])
        target[..., 3:5] = torch.log((1e-16 + target[..., 3:5] / anchors))
        box_loss = self.mean_square_error(predictions[..., 1:5][obj], target[..., 1:5][obj])

        # Class loss
        class_loss = self.cross_entropy((predictions[..., 5:][obj]), (target[..., 5][obj].long()))

        return (self.var_box * box_loss +
                self.var_Obj * object_loss +
                self.var_noObject * no_object_loss +
                self.var_class * class_loss)
コード例 #12
0
ファイル: loss.py プロジェクト: KC900201/Python_Learning
    def forward(self, predictions, target, anchors):
        obj = target[..., 0] == 1
        noobj = target[..., 0] == 0

        # No object loss
        no_object_loss = self.bce(
            (predictions[..., 0:1][noobj], (target[..., 0:1][noobj])),
        )

        # Object Loss
        anchors = anchors.reshape(1, 3, 1, 1, 2)  # p_w * exp(t_w)
        box_preds = torch.cat([self.sigmoid(predictions[..., 1:3]), torch.exp(predictions[..., 3:5] * anchors)], dim=1)
        ious = intersection_over_union(box_preds[obj], target[..., 1:5][obj]).detach()
        object_loss = self.bce((predictions[..., 0:1][obj]), (ious * target[..., 0:1]))

        # Box Coordinate Loss
        predictions[..., 1:3] = self.sigmoid(predictions[..., 1:3])  # x, y to between [0,1]
        target[..., 3:5] = torch.log(
            (1e-6 + target[..., 3:5] / anchors)
        )
        box_loss = self.mse(predictions[..., 1:5][obj], target[..., 1:5][obj])

        # Class Loss
        class_loss = self.entropy(
            (predictions[..., 5:][obj]), (target[..., 5][obj].long()),
        )

        return (
                self.lambda_obj * box_loss
                + self.lambda_obj * object_loss
                + self.lambda_noobj * no_object_loss
                + self.lambda_class * class_loss
        )
def get_performance(model, device_to_use, data_loader):
    """

    :param model:
    :param device_to_use:
    :param data_loader:
    :return:
    """

    criterion = nn.BCEWithLogitsLoss().to(device_to_use)
    detect_thres = 0.5

    model.eval()
    e_loss = 0
    e_iou = 0

    with torch.no_grad():
        for iteration, (img, label) in enumerate(data_loader, 1):
            img = img.to(device_to_use)
            label = label.to(device_to_use)

            label_out = model(img)
            batch_loss = criterion(label_out, label.float())

            e_loss += batch_loss.item()
            preds = torch.sigmoid(label_out) > detect_thres
            e_iou += utils.intersection_over_union(preds.float(), label.float()).cpu().detach().numpy()

    e_loss = e_loss / len(data_loader)
    e_iou = e_iou / len(data_loader)

    return e_iou, e_loss
コード例 #14
0
    def forward(self, predictions, target, anchors):
        # Check where obj and noobj (we ignore if target == -1)
        obj = target[..., 0] == 1  # in paper this is Iobj_i
        noobj = target[..., 0] == 0  # in paper this is Inoobj_i

        # ======================= #
        #   FOR NO OBJECT LOSS    #
        # ======================= #

        no_object_loss = self.bce(
            (predictions[..., 0:1][noobj]),
            (target[..., 0:1][noobj]),
        )

        # ==================== #
        #   FOR OBJECT LOSS    #
        # ==================== #

        anchors = anchors.reshape(1, 3, 1, 1, 2)
        box_preds = torch.cat([
            self.sigmoid(predictions[..., 1:3]),
            torch.exp(predictions[..., 3:5]) * anchors
        ],
                              dim=-1)
        ious = intersection_over_union(box_preds[obj],
                                       target[..., 1:5][obj]).detach()
        object_loss = self.bce((predictions[..., 0:1][obj]),
                               (ious * target[..., 0:1][obj]))

        # ======================== #
        #   FOR BOX COORDINATES    #
        # ======================== #

        predictions[...,
                    1:3] = self.sigmoid(predictions[...,
                                                    1:3])  # x,y coordinates
        target[..., 3:5] = torch.log(
            (1e-16 + target[..., 3:5] / anchors))  # width, height coordinates
        box_loss = self.mse(predictions[..., 1:5][obj], target[..., 1:5][obj])

        # ================== #
        #   FOR CLASS LOSS   #
        # ================== #

        class_loss = self.entropy(
            (predictions[..., 5:][obj]),
            (target[..., 5][obj].long()),
        )

        #    print("__________________________________")
        #    print(self.lambda_box * box_loss)
        #    print(self.lambda_obj * object_loss)
        #    print(self.lambda_noobj * no_object_loss)
        #    print(self.lambda_class * class_loss)
        #    print("\n")

        return (self.lambda_box * box_loss + self.lambda_obj * object_loss +
                self.lambda_noobj * no_object_loss +
                self.lambda_class * class_loss)
コード例 #15
0
def process_image(model,
                  devise_to_use,
                  ch_mus,
                  ch_sigmas,
                  in_img,
                  in_img_label=None,
                  detect_thres=0.5):
    """
    Pass image through model and get iou score of the prediction if in_img_label is not None

    :param detect_thres:
    :param in_img_label:
    :param model:
    :param devise_to_use:
    :param in_img:
    :param ch_mus:
    :param ch_sigmas:
    :return:
    """
    # Zero all collected variables
    global edge_extract_act
    global cont_int_in_act
    global cont_int_out_act

    edge_extract_act = 0
    cont_int_in_act = 0
    cont_int_out_act = 0

    normalize = transforms.Normalize(mean=ch_mus, std=ch_sigmas)
    model_in_img = normalize(in_img)
    model_in_img = model_in_img.to(devise_to_use).unsqueeze(0)

    # Pass the image through the model
    model.eval()

    if isinstance(model, new_piech_models.JointPathfinderContourResnet50):
        # Output is contour_dataset_out, pathfinder_out
        label_out, _ = model(model_in_img)
    else:
        label_out = model(model_in_img)

    iou = None
    preds = None
    if in_img_label is not None:
        in_img_label = in_img_label.to(devise_to_use).unsqueeze(0)

        preds = (torch.sigmoid(label_out) > detect_thres)

        iou = utils.intersection_over_union(preds.float(),
                                            in_img_label.float())
        iou = iou.cpu().detach().numpy()

        # Debug show predictions
        # z = preds.float().squeeze()
        # plt.figure()
        # plt.imshow(z)

    return iou, preds
コード例 #16
0
 def forward(self, obj, predictions, target, anchors):
     anchors = anchors.reshape(1, 3, 1, 1, 2)
     box_preds = torch.cat([
         self.sigmoid(predictions[..., 1:3]),
         torch.exp(predictions[..., 3:5]) * anchors
     ],
                           dim=-1)
     ious = intersection_over_union(box_preds[obj],
                                    target[..., 1:5][obj],
                                    box_format="midpoints").detach()
     return self.mse(self.sigmoid(predictions[..., 0:1][obj]),
                     ious * target[..., 0:1][obj])
コード例 #17
0
ファイル: graphs_for_camera.py プロジェクト: nekmy/myrcnn
def detection_target(self, proposals, gt_boxes, gt_cls_ids, gt_masks):
    overlaps = utils.intersection_over_union(proposals, gt_boxes)
    positive_count = self.NUM_TARGET * self.RATIO
    positive_indices = tf.where(overlaps>=0.5)[0]
    negative_indices = tf.where(overlaps<0.5)[0]
    positive_indices = tf.random_shuffle(positive_indices)[:positive_count]
    negative_count = self.NUM_TARGET - positive_count
    negative_indices = tf.random_shuffle(negative_indices)[:negative_count]
    positive_proposals = tf.gather(proposals, positive_indices)
    positive_gt_boxes = tf.gather(gt_boxes, positive_indices)
    positive_gt_deltas = utils.make_deltas(positive_proposals, positive_gt_boxes)
    return
コード例 #18
0
 def test_iou_center_0(self):
     # IF
     boxes_predictions = torch.tensor([0.25, 0.25, 0.75, 0.75])
     boxes_labels = torch.tensor([0.25, 0.25, 0.75, 0.75])
     ious_expected = torch.tensor([1.0], )
     # WHEN
     ious_actual = intersection_over_union(boxes_predictions, boxes_labels,
                                           "corners")
     # THEN
     self.assertAlmostEqual(ious_expected.item(),
                            ious_actual.item(),
                            places=5)
コード例 #19
0
 def test_iou_midpoints_2(self):
     """Checked the iou of two identical, overlapping squares with some offset"""
     # IF
     boxes_predictions = torch.tensor([0.5, 0.5, 0.5, 0.5])
     boxes_labels = torch.tensor([0.25, 0.25, 0.5, 0.5])
     ious_expected = torch.tensor([(1 / 16) / (7 / 16)])
     # WHEN
     ious_actual = intersection_over_union(boxes_predictions, boxes_labels,
                                           "midpoints")
     # THEN
     self.assertAlmostEqual(ious_expected.item(),
                            ious_actual.item(),
                            places=5)
コード例 #20
0
 def test_iou_midpoints_0(self):
     """Checked the iou of two coinciding squares"""
     # IF
     boxes_predictions = torch.tensor([0.5, 0.5, 0.5, 0.5])
     boxes_labels = torch.tensor([0.5, 0.5, 0.5, 0.5])
     ious_expected = torch.tensor([1.0], )
     # WHEN
     ious_actual = intersection_over_union(boxes_predictions, boxes_labels,
                                           "midpoints")
     # THEN
     self.assertAlmostEqual(ious_expected.item(),
                            ious_actual.item(),
                            places=5)
コード例 #21
0
 def forward(self, predictions, target):
     predictions = predictions.reshape(-1, self.S, self.S,(self.B*5) + self.C)
     iou_b1 = intersection_over_union(predictions[..., 21:25], target[..., 21:25])
     iou_b2=  intersection_over_union(predictions[..., 26:30], target[..., 21:25])
     ious = torch.cat([iou_b1.unsqueeze(0), iou_b2.unsqueeze(0)], dim=0)
     _ , best_box = torch.max(ious, dim=0)
     exists_box = target[..., 20].unsqueeze(3) #Iobj_i
     #Box loss
     box_predictions = exists_box * (best_box * predictions[..., 26:30] + (1 - best_box) * predictions[..., 21:25])
     
     box_targets = exists_box * target[..., 21:25]
     
     box_predictions[..., 2:4] = torch.sign(box_predictions[...,2:4]) * torch.sqrt(torch.abs(box_predictions[...,2:4] + 1e-6))
     
     box_targets[..., 2:4] = torch.sqrt(box_targets[..., 2:4])
     #(N, S, S, 4) -> (N * S * S, 4)
     box_loss = self.mse(torch.flatten(box_predictions, end_dim=-2), torch.flatten(box_targets, end_dim=-2))
     #Object loss
     pred_box = (best_box * predictions[..., 25:26] + (1 - best_box) * predictions[..., 20:21])
     #(N * S * S)
     object_loss = self.mse(torch.flatten(exists_box * pred_box), torch.flatten(exists_box * target[..., 20:21]))
     #no object loss
     #(N * S * S, 1) -> (N, S*S)
     no_object_loss = self.mse(torch.flatten((1 - exists_box) * predictions[..., 20:21], start_dim=1),
                               torch.flatten((1 - exists_box) * target[..., 20:21], start_dim=1))
     no_object_loss += self.mse(torch.flatten((1 - exists_box) * predictions[..., 25:26], start_dim=1),
                       torch.flatten((1 - exists_box) * target[..., 20:21], start_dim=1))
     #class loss
     #(N,S,S,20) -> (N*S*S,20)
     class_loss = self.mse(torch.flatten(exists_box * predictions[..., :20], end_dim=-2),
                           torch.flatten(exists_box * target[..., :20], end_dim=-2))
     #overall loss
     
     loss = self.lambda_coord * box_loss + object_loss + self.lambda_noobj * no_object_loss + class_loss
     
     return loss
コード例 #22
0
    def train():
        """ Train for one Epoch over the train data set """
        model.train()
        e_loss = 0
        e_iou = np.zeros_like(detect_thres)

        for iteration, (img, label) in enumerate(train_data_loader, 1):
            optimizer.zero_grad()  # zero the parameter gradients

            img = img.to(device)
            label = label.to(device)

            label_out = model(img)

            bce_loss = criterion(label_out, label.float())
            reg_loss = 0

            if use_gaussian_reg_on_lateral_kernels:
                reg_loss = \
                    inverse_gaussian_regularization(
                        model.contour_integration_layer.lateral_e.weight,
                        model.contour_integration_layer.lateral_i.weight
                    )

            total_loss = bce_loss + lambda1 * reg_loss

            # print("Loss: {:0.4f}, bce_loss {:0.4f}, lateral kernels reg_loss {:0.4f}".format(
            #     total_loss, bce_loss,  lambda1 * reg_loss))

            total_loss.backward()
            optimizer.step()

            e_loss += total_loss.item()

            sigmoid_label_out = torch.sigmoid(label_out)

            for th_idx, thresh in enumerate(detect_thres):
                preds = sigmoid_label_out > thresh
                e_iou[th_idx] += utils.intersection_over_union(
                    preds.float(), label.float()).cpu().detach().numpy()

        e_loss = e_loss / len(train_data_loader)
        e_iou = e_iou / len(train_data_loader)

        # iou_arr = ["{:0.2f}".format(item) for item in e_iou]
        # print("Train Epoch {} Loss = {:0.4f}, IoU={}".format(epoch, e_loss, iou_arr))

        return e_loss, e_iou
コード例 #23
0
    def train_contour():
        """ Train for one Epoch over the train data set """
        model.train()
        e_loss = 0
        e_iou = 0

        for iteration, (img, label) in enumerate(contour_train_data_loader, 1):
            optimizer.zero_grad()  # zero the parameter gradients

            img = img.to(device)
            label = label.to(device)

            label_out, _ = model(img)
            batch_loss = criterion(label_out, label.float())

            kernel_loss = \
                inverse_gaussian_regularization(
                    model.contour_integration_layer.lateral_e.weight,
                    model.contour_integration_layer.lateral_i.weight
                )

            total_loss = batch_loss + lambda1 * kernel_loss

            # print("Total Loss: {:0.4f}, cross_entropy_loss {:0.4f}, kernel_loss {:0.4f}".format(
            #     total_loss, batch_loss,  lambda1 * kernel_loss))
            #
            # import pdb
            # pdb.set_trace()

            total_loss.backward()
            optimizer.step()

            e_loss += total_loss.item()

            preds = (torch.sigmoid(label_out) > detect_thres)
            e_iou += utils.intersection_over_union(
                preds.float(), label.float()).cpu().detach().numpy()

        e_loss = e_loss / len(contour_train_data_loader)
        e_iou = e_iou / len(contour_train_data_loader)

        # print("Train Epoch {} Loss = {:0.4f}, IoU={:0.4f}".format(epoch, e_loss, e_iou))

        return e_loss, e_iou
コード例 #24
0
ファイル: loss.py プロジェクト: XingZeng307/YOLOv3
def YOLOloss(predictions, targets, anchors):
    """
    calculate loss for one scale
    :param predictions: pred shape for one scale (batch, scale, grid, grid, 3, 5 + num_classes)
    :param targets: target shape for one scale (batch, scale, grid, grid, 3, 5 + 1)
    :param anchors: scaled anchor size based on current scale
    :return: box_loss + object_loss + noobject_loss + class_loss
    """

    mse = nn.MSELoss()
    bce = nn.BCEWithLogitsLoss()
    obj = targets[..., 4] == 1
    noobj = targets[..., 4] == 0
    entropy = nn.CrossEntropyLoss()

    # bounding box loss
    # use sig(tx), sig(ty) to calculate x,y center loss
    predictions[..., 0:2] = torch.sigmoid(predictions[..., 0:2])
    # sig(tx), sig(ty), tw, th --> calculate box loss
    box_loss = mse(predictions[..., 0:4][obj], targets[..., 0:4][obj])

    # object loss
    # absolute value --> calculate ious
    pred_abs_boxes = rel_to_abs_box(predictions[..., 0:4], anchors)
    target_abs_boxes = rel_to_abs_box(targets[..., 0:4], anchors)
    ious = intersection_over_union(pred_abs_boxes[obj], target_abs_boxes[obj])
    # ious = torch.flatten(ious)

    # YOLOv3 predicts an objectness score for each bounding box using logistic regression, so here use sigmoid function
    # and based on the iou bt prediction boxes and target boxes to calculate obj loss
    object_loss = mse(torch.sigmoid(predictions[..., 4:5][obj]),
                      ious * targets[..., 4:5][obj])

    # noobj loss
    noobject_loss = bce(predictions[..., 4:5][noobj], targets[..., 4:5][noobj])

    # class_loss = bce(predictions[..., 5:][obj], targets[..., 5:][obj])
    class_loss = entropy(
        (predictions[..., 5:][obj]),
        (targets[..., 5][obj].long()),
    )

    # here the weights can be changed
    return 5 * box_loss + 5 * object_loss + 0.5 * noobject_loss + 5 * class_loss
コード例 #25
0
ファイル: server.py プロジェクト: castrovictor/DLEdge
def detect_objects_response():
    global models
    model_names = request.args.get('models', "")
    model_names = model_names.split(",") if model_names else []

    response = {}
    execution_mode = None
    min_t_iou = 1.0
    for model_name in model_names:
        model_index = models[model_name]
        objects_detected = []
        try:
            objects, execution_mode, t_iou = model_results[model_index].get(timeout=1)[1:]
            for obj in objects:
                objects_detected.append({'bbox': [obj.xmin, obj.ymin, obj.xmax - obj.xmin, obj.ymax - obj.ymin],
                                         'class': obj.name, 'score': float(obj.confidence)})
            if t_iou < min_t_iou:
                min_t_iou = t_iou
        except:
            pass
        response[model_name] = objects_detected
    if execution_mode == 'ensemble':
        # Ensemble Detection: Use non-maximum suppression to keep only those detected objects with high confidence
        objects = list(sorted(list(itertools.chain.from_iterable(response.values())),
                              key=lambda obj: obj['score'], reverse=True))
        skip_ids = []
        for i in range(len(objects)):
            for j in range(i + 1, len(objects)):
                if intersection_over_union(objects[i], objects[j]) > min_t_iou:
                    skip_ids.append(j)
        response = {'all': []}
        for i, obj in enumerate(objects):
            if i not in skip_ids:
                response['all'].append(obj)
    if model_names:
        record_fps()
        response["fps"] = get_fps_stats()
    else:
        response["fps"] = None
    return jsonify(response), 201
コード例 #26
0
    def validate():
        """ Get loss over validation set """
        model.eval()
        e_loss = 0
        e_iou = np.zeros_like(detect_thres)

        with torch.no_grad():
            for iteration, (img, label) in enumerate(val_data_loader, 1):
                img = img.to(device)
                label = label.to(device)

                label_out = model(img)
                bce_loss = criterion(label_out, label.float())
                reg_loss = 0

                if use_gaussian_reg_on_lateral_kernels:
                    reg_loss = \
                        inverse_gaussian_regularization(
                            model.contour_integration_layer.lateral_e.weight,
                            model.contour_integration_layer.lateral_i.weight
                        )

                total_loss = bce_loss + lambda1 * reg_loss

                e_loss += total_loss.item()

                sigmoid_label_out = torch.sigmoid(label_out)

                for th_idx, thresh in enumerate(detect_thres):
                    preds = sigmoid_label_out > thresh
                    e_iou[th_idx] += utils.intersection_over_union(
                        preds.float(), label.float()).cpu().detach().numpy()

        e_loss = e_loss / len(val_data_loader)
        e_iou = e_iou / len(val_data_loader)

        # print("Val Loss = {:0.4f}, IoU={}".format(e_loss, e_iou))

        return e_loss, e_iou
コード例 #27
0
    def forward(self, predictions, target, device, epoch=0):
        self.anchor_boxes = self.anchor_boxes.to(device)
        exist_mask = target[..., 4:5]
        existing_boxes = exist_mask * predictions
        cell_idx = torch.arange(13, device=device)
        bx = exist_mask * torch.sigmoid(predictions[
            ..., 0:1]) + exist_mask * cell_idx.view([1, 1, -1, 1, 1])
        by = exist_mask * torch.sigmoid(predictions[
            ..., 1:2]) + exist_mask * cell_idx.view([1, -1, 1, 1, 1])
        bw = (exist_mask * self.anchor_boxes[:, 2].view([1, 1, 1, -1, 1]) *
              exist_mask * torch.exp(predictions[..., 2:3]))
        bh = (exist_mask * self.anchor_boxes[:, 3].view([1, 1, 1, -1, 1]) *
              exist_mask * torch.exp(predictions[..., 3:4]))

        ious = intersection_over_union(torch.cat([bx, by, bw, bh], dim=-1),
                                       target[..., :4])

        xy_loss = self.mse(torch.cat([bx, by], dim=-1), target[..., :2])
        bwbh = torch.cat([bw, bh], dim=-1)
        wh_loss = self.mse(
            torch.sqrt(torch.abs(bwbh) + 1e-32),
            torch.sqrt(torch.abs(target[..., 2:4]) + 1e-32),
        )
        obj_loss = self.mse(
            exist_mask,
            exist_mask * ious * torch.sigmoid(existing_boxes[..., 4:5]))
        # (ious.max(-1)[0]<0.6).int().unsqueeze(-1)
        no_obj_loss = self.mse(
            (1 - exist_mask),
            (((1 - exist_mask) * (1 - torch.sigmoid(predictions[..., 4:5]))) *
             ((ious.max(-1)[0] < 0.6).int().unsqueeze(-1))),
        )
        class_loss = F.nll_loss(
            (exist_mask *
             F.log_softmax(predictions[..., 5:], dim=-1)).flatten(end_dim=-2),
            target[..., 5:].flatten(end_dim=-2).argmax(-1),
        )
        return 5 * xy_loss + 5 * wh_loss + obj_loss + no_obj_loss + class_loss
コード例 #28
0
def apply_non_max_suppression(single_img_predictions,
                              detection_threshold=0.5,
                              overlap_threshold=0.4):
    boxes, scores, labels = single_img_predictions

    # Filter out non-detections, using the classification probability
    # Note that we want to keep the last dimension of boxes, which contains the bounding box cooordinates
    score_mask = (scores > detection_threshold)
    scores = scores[score_mask]
    labels = labels[score_mask]
    boxes = boxes[score_mask, :]

    ## Apply non-max suppression
    for iA, (boxA, scoreA) in enumerate(zip(boxes, scores)):
        if scoreA > 0.0:
            try:
                # Search forward for overlapping boxes
                suppression_candidates = [(iA, scoreA)]
                for iB, (boxB,
                         scoreB) in enumerate(zip(boxes[iA + 1:, :],
                                                  scores[iA + 1:]),
                                              start=iA + 1):
                    if intersection_over_union(boxA, boxB) > overlap_threshold:
                        suppression_candidates.append((iB, scoreB))

                # Non-max suppression by setting score to -1
                if len(suppression_candidates) > 1:
                    suppression_candidates.sort(key=lambda x: x[-1])
                    for target, _ in suppression_candidates[:-1]:
                        scores[target] = -1.0

            except IndexError:
                # catch iA+1 when it goes out of bound
                # Allegedly try-except blocks are ubiquitous for control-flow in Python
                pass

    return boxes, scores, labels
コード例 #29
0
    def forward(self, predictions, target):
        # predictions are shaped (BATCH_SIZE, S*S(C+B*5) when inputted
        predictions = predictions.reshape(-1, self.S, self.S, self.C + self.B * 5)

        # Calculate IoU for the two predicted bounding boxes with target bbox
        iou_b1 = intersection_over_union(predictions[..., 21:25], target[..., 21:25])
        iou_b2 = intersection_over_union(predictions[..., 26:30], target[..., 21:25])
        ious = torch.cat([iou_b1.unsqueeze(0), iou_b2.unsqueeze(0)], dim=0)

        # Take the box with highest IoU out of the two prediction
        # Note that bestbox will be indices of 0, 1 for which bbox was best
        iou_maxes, bestbox = torch.max(ious, dim=0)
        exists_box = target[..., 20].unsqueeze(3)  # in paper this is Iobj_i

        # ======================== #
        #   FOR BOX COORDINATES    #
        # ======================== #

        # Set boxes with no object in them to 0. We only take out one of the two
        # predictions, which is the one with highest Iou calculated previously.
        box_predictions = exists_box * (
            (
                bestbox * predictions[..., 26:30]
                + (1 - bestbox) * predictions[..., 21:25]
            )
        )

        box_targets = exists_box * target[..., 21:25]

        # Take sqrt of width, height of boxes to ensure that
        box_predictions[..., 2:4] = torch.sign(box_predictions[..., 2:4]) * torch.sqrt(
            torch.abs(box_predictions[..., 2:4] + 1e-6)
        )
        box_targets[..., 2:4] = torch.sqrt(box_targets[..., 2:4])

        box_loss = self.mse(
            torch.flatten(box_predictions, end_dim=-2),
            torch.flatten(box_targets, end_dim=-2),
        )

        # ==================== #
        #   FOR OBJECT LOSS    #
        # ==================== #

        # pred_box is the confidence score for the bbox with highest IoU
        pred_box = (
            bestbox * predictions[..., 25:26] + (1 - bestbox) * predictions[..., 20:21]
        )

        object_loss = self.mse(
            torch.flatten(exists_box * pred_box),
            torch.flatten(exists_box * target[..., 20:21]),
        )

        # ======================= #
        #   FOR NO OBJECT LOSS    #
        # ======================= #

        #max_no_obj = torch.max(predictions[..., 20:21], predictions[..., 25:26])
        #no_object_loss = self.mse(
        #    torch.flatten((1 - exists_box) * max_no_obj, start_dim=1),
        #    torch.flatten((1 - exists_box) * target[..., 20:21], start_dim=1),
        #)

        no_object_loss = self.mse(
            torch.flatten((1 - exists_box) * predictions[..., 20:21], start_dim=1),
            torch.flatten((1 - exists_box) * target[..., 20:21], start_dim=1),
        )

        no_object_loss += self.mse(
            torch.flatten((1 - exists_box) * predictions[..., 25:26], start_dim=1),
            torch.flatten((1 - exists_box) * target[..., 20:21], start_dim=1)
        )

        # ================== #
        #   FOR CLASS LOSS   #
        # ================== #

        class_loss = self.mse(
            torch.flatten(exists_box * predictions[..., :20], end_dim=-2,),
            torch.flatten(exists_box * target[..., :20], end_dim=-2,),
        )

        loss = (
            self.lambda_coord * box_loss  # first two rows in paper
            + object_loss  # third row in paper
            + self.lambda_noobj * no_object_loss  # forth row
            + class_loss  # fifth row
        )

        return loss
        model_results_dir = os.path.dirname(saved_model)
        preds_dir = os.path.join(model_results_dir, 'predictions')
        if not os.path.exists(preds_dir):
            os.makedirs(preds_dir)

        with torch.no_grad():
            for iteration, (img, label) in enumerate(val_data_loader, 0):
                img = img.to(device)
                label = label.to(device)

                label_out = net(img)
                batch_loss = criterion(label_out, label.float())

                preds = (torch.sigmoid(label_out) > detect_thres)
                iou = utils.intersection_over_union(
                    preds.float(), label.float()).cpu().detach().numpy()
                e_iou += iou

                # Before visualizing Sigmoid the output. This is already done in the loss function
                label_out = torch.sigmoid(label_out)

                if save_predictions:

                    filename = list_of_files[iteration].split('/')[-1]
                    file_path = os.path.dirname(
                        list_of_files[iteration].split('labels')[-1])

                    store_path = preds_dir + file_path

                    if not os.path.exists(store_path):
                        os.makedirs(store_path)