コード例 #1
0
def go(t=10, m=Uniform(30, 30), i=Uniform(0, 0), seed=0, dt=0.001, f=DoubleExp(1e-3, 1e-1), fS=DoubleExp(1e-3, 1e-1), d1=None, f1=None, e1=None, l1=False, stim=lambda t: np.sin(t)):

    if not f1: f1=f
    with nengo.Network(seed=seed) as model:
        # Stimulus and Nodes
        inpt = nengo.Node(stim)
        tar = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
        pre = nengo.Ensemble(100, 1, max_rates=m, seed=seed, neuron_type=LIF())
        lif = nengo.Ensemble(1, 1, max_rates=m, intercepts=i, encoders=Choice([[1]]), neuron_type=LIF(), seed=seed)
        wilson = nengo.Ensemble(1, 1, max_rates=m, intercepts=i, encoders=Choice([[1]]), neuron_type=Wilson(), seed=seed)
        bio = nengo.Ensemble(1, 1, max_rates=m, intercepts=i, encoders=Choice([[1]]), neuron_type=Bio("Pyramidal"), seed=seed)
        nengo.Connection(inpt, pre, synapse=None, seed=seed)
        cLif = nengo.Connection(pre, lif, synapse=f1, seed=seed, solver=NoSolver(d1))
        cWilson = nengo.Connection(pre, wilson, synapse=f1, seed=seed, solver=NoSolver(d1))
        cBio = nengo.Connection(pre, bio, synapse=f1, seed=seed, solver=NoSolver(d1))
        pInpt = nengo.Probe(inpt, synapse=None)
        pPre = nengo.Probe(pre.neurons, synapse=None)
        pLif = nengo.Probe(lif.neurons, synapse=None)
        pWilson = nengo.Probe(wilson.neurons, synapse=None)
        pBio = nengo.Probe(bio.neurons, synapse=None)
        if l1: learnEncoders(cBio, lif, fS, alpha=3e-7) # Encoder Learning (Bio)

    with nengo.Simulator(model, seed=seed, dt=dt, progress_bar=False) as sim:
        setWeights(cBio, d1, e1)
        neuron.h.init()
        sim.run(t, progress_bar=True)
        reset_neuron(sim, model) 
      
    e1 = cBio.e if l1 else e1

    return dict(
        times=sim.trange(),
        inpt=sim.data[pInpt],
        pre=sim.data[pPre],
        lif=sim.data[pLif],
        wilson=sim.data[pWilson],
        bio=sim.data[pBio],
        e1=e1,
    )
コード例 #2
0
def go(NPre=100,
       N=100,
       N2=30,
       t=10,
       m=Uniform(30, 30),
       i=Uniform(-0.8, 0.8),
       seed=0,
       dt=0.001,
       f=DoubleExp(1e-3, 1e-1),
       fS=DoubleExp(1e-3, 1e-1),
       neuron_type=LIF(),
       d1=None,
       d2=None,
       f1=None,
       f2=None,
       e1=None,
       e2=None,
       l1=False,
       l2=False,
       stim=lambda t: [0, 0]):

    if not f1: f1 = f
    if not f2: f2 = f
    if not np.any(d2): d2 = np.zeros((N, 1))
    with nengo.Network(seed=seed) as model:
        # Stimulus and Nodes
        inpt = nengo.Node(stim)
        tar = nengo.Ensemble(1, 2, neuron_type=nengo.Direct())
        tar2 = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
        pre = nengo.Ensemble(NPre,
                             2,
                             radius=2,
                             max_rates=m,
                             seed=seed,
                             neuron_type=LIF())
        ens = nengo.Ensemble(N,
                             2,
                             radius=2,
                             max_rates=m,
                             intercepts=i,
                             neuron_type=neuron_type,
                             seed=seed)
        ens2 = nengo.Ensemble(N2,
                              1,
                              max_rates=m,
                              intercepts=i,
                              neuron_type=neuron_type,
                              seed=seed + 1)
        nengo.Connection(inpt, pre, synapse=None, seed=seed)
        nengo.Connection(inpt, tar, synapse=f, seed=seed)
        nengo.Connection(tar,
                         tar2,
                         synapse=f,
                         function=multiply,
                         seed=seed + 1)
        c1 = nengo.Connection(pre,
                              ens,
                              synapse=f1,
                              seed=seed,
                              solver=NoSolver(d1))
        if isinstance(neuron_type, Bio):
            c2 = nengo.Connection(ens,
                                  ens2,
                                  synapse=f2,
                                  seed=seed + 1,
                                  function=multiply)
        else:
            c2 = nengo.Connection(ens.neurons,
                                  ens2,
                                  synapse=f2,
                                  seed=seed + 1,
                                  transform=d2.T)
        pInpt = nengo.Probe(inpt, synapse=None)
        pPre = nengo.Probe(pre.neurons, synapse=None)
        pEns = nengo.Probe(ens.neurons, synapse=None)
        pEns2 = nengo.Probe(ens2.neurons, synapse=None)
        pTar = nengo.Probe(tar, synapse=None)
        pTar2 = nengo.Probe(tar2, synapse=None)
        # Encoder Learning (Bio)
        if l1:
            tarEns = nengo.Ensemble(N,
                                    2,
                                    radius=2,
                                    max_rates=m,
                                    intercepts=i,
                                    neuron_type=nengo.LIF(),
                                    seed=seed)
            nengo.Connection(tar, tarEns, synapse=None, seed=seed)
            learnEncoders(c1, tarEns, fS, alpha=3e-8)
            pTarEns = nengo.Probe(tarEns.neurons, synapse=None)
        if l2:
            tarEns2 = nengo.Ensemble(N2,
                                     1,
                                     max_rates=m,
                                     intercepts=i,
                                     neuron_type=nengo.LIF(),
                                     seed=seed + 1)
            nengo.Connection(tar2, tarEns2, synapse=None)
            #             nengo.Connection(ens.neurons, tarEns2, synapse=f2, transform=d2.T, seed=seed+1)
            learnEncoders(c2, tarEns2, fS, alpha=1e-7)
            pTarEns2 = nengo.Probe(tarEns2.neurons, synapse=None)
            pTarState = nengo.Probe(tarEns2, synapse=f)

    with nengo.Simulator(model, seed=seed, dt=dt, progress_bar=False) as sim:
        if isinstance(neuron_type, Bio):
            setWeights(c1, d1, e1)
            setWeights(c2, d2, e2)
            neuron.h.init()
            sim.run(t, progress_bar=True)
            reset_neuron(sim, model)
        else:
            sim.run(t, progress_bar=True)

    e1 = c1.e if l1 else e1
    e2 = c2.e if l2 else e2

    return dict(
        times=sim.trange(),
        inpt=sim.data[pInpt],
        pre=sim.data[pPre],
        ens=sim.data[pEns],
        ens2=sim.data[pEns2],
        tar=sim.data[pTar],
        tar2=sim.data[pTar2],
        tarEns=sim.data[pTarEns] if l1 else None,
        tarEns2=sim.data[pTarEns2] if l2 else None,
        tarState=sim.data[pTarState] if l2 else None,
        e1=e1,
        e2=e2,
    )
コード例 #3
0
def go(NPre=100, N=30, t=10, m=Uniform(30, 30), i=Uniform(-0.8, 0.8), seed=0, dt=0.001, f=DoubleExp(1e-3, 1e-1), fS=DoubleExp(1e-3, 1e-1), neuron_type=LIF(), d1=None, d2=None, f1=None, f2=None, e1=None, e2=None, l1=False, l2=False, test=False, freq=1, phase=0, tDrive=0.2):

    A = [[1, 1e-1*2*np.pi*freq], [-1e-1*2*np.pi*freq, 1]]  # tau*A + I
    if isinstance(neuron_type, Bio) and not f1: f1=DoubleExp(1e-3, 1e-1)
    if isinstance(neuron_type, Bio) and not f2: f2=DoubleExp(1e-3, 1e-1)
    stim = lambda t: [np.sin(2*np.pi*freq*t+phase), np.cos(2*np.pi*freq*t+phase)]

    with nengo.Network(seed=seed) as model:          
        inpt = nengo.Node(stim)
        tar = nengo.Ensemble(1, 2, neuron_type=nengo.Direct())
        pre = nengo.Ensemble(NPre, 2, max_rates=m, neuron_type=nengo.SpikingRectifiedLinear(), radius=2, seed=seed)
        ens = nengo.Ensemble(N, 2, max_rates=m, intercepts=i, neuron_type=neuron_type, radius=2, seed=seed)
        nengo.Connection(inpt, tar, synapse=None, transform=A, seed=seed)
        nengo.Connection(inpt, pre, synapse=None, seed=seed)
        c1 = nengo.Connection(pre, ens, synapse=f1, seed=seed, solver=NoSolver(d1))
        pInpt = nengo.Probe(inpt, synapse=None)
        pTar = nengo.Probe(tar, synapse=None)
        pPre = nengo.Probe(pre.neurons, synapse=None)
        pEns = nengo.Probe(ens.neurons, synapse=None)
        # Encoder Learning (Bio)
        if l1:
            tarEns = nengo.Ensemble(N, 2, max_rates=m, intercepts=i, neuron_type=nengo.LIF(), seed=seed)
            nengo.Connection(inpt, tarEns, synapse=None, seed=seed)
            learnEncoders(c1, tarEns, fS)
            pTarEns = nengo.Probe(tarEns.neurons, synapse=None)
        if l2:
            pre2 = nengo.Ensemble(NPre, 2, max_rates=m, neuron_type=nengo.LIF(), seed=seed, radius=2)
            tarEns2 = nengo.Ensemble(N, 2, max_rates=m, intercepts=i, neuron_type=nengo.LIF(), seed=seed)
            ens2 = nengo.Ensemble(N, 2, max_rates=m, intercepts=i, neuron_type=neuron_type, seed=seed, radius=2)
            
#             ens3 = nengo.Ensemble(N, 2, max_rates=m, intercepts=i, neuron_type=neuron_type, seed=seed, radius=2)
#             nengo.Connection(tar, pre2, synapse=f)
#             c3 = nengo.Connection(ens, ens2, synapse=f2, seed=seed)
#             c4 = nengo.Connection(pre2, ens3, synapse=f1, seed=seed)
#             learnEncoders(c3, ens3, fS)
#             pTarEns2 = nengo.Probe(ens3.neurons, synapse=None)
#             pEns2 = nengo.Probe(ens2.neurons, synapse=None)

            nengo.Connection(inpt, pre2, synapse=f)
            nengo.Connection(pre2, tarEns2, synapse=f, seed=seed)
            c3 = nengo.Connection(ens, ens2, synapse=f2, seed=seed)
            learnEncoders(c3, tarEns2, fS, alpha=3e-7)
            pTarEns2 = nengo.Probe(tarEns2.neurons, synapse=None)
            pEns2 = nengo.Probe(ens2.neurons, synapse=None)
        if test:
            c2 = nengo.Connection(ens, ens, synapse=f2, seed=seed, solver=NoSolver(d2))
            off = nengo.Node(lambda t: 1 if t>tDrive else 0)
            nengo.Connection(off, pre.neurons, synapse=None, transform=-1e4*np.ones((NPre, 1)))

    with nengo.Simulator(model, seed=seed, dt=dt, progress_bar=False) as sim:
        if isinstance(neuron_type, Bio):
            setWeights(c1, d1, e1)
            if l2: setWeights(c3, d2, e2)
#             if l2: setWeights(c4, d1, e1)
            if test: setWeights(c2, d2, e2)
            neuron.h.init()
            sim.run(t, progress_bar=True)
            reset_neuron(sim, model) 
        else:
            sim.run(t, progress_bar=True)
      
    e1 = c1.e if l1 else e1
    e2 = c3.e if l2 else e2

    return dict(
        times=sim.trange(),
        inpt=sim.data[pInpt],
        tar=sim.data[pTar],
        pre=sim.data[pPre],
        ens=sim.data[pEns],
        tarEns=sim.data[pTarEns] if l1 else None,
        tarEns2=sim.data[pTarEns2] if l2 else None,
        ens2=sim.data[pEns2] if l2 else None,
        e1=e1,
        e2=e2,
    )
コード例 #4
0
def go(NPre=100,
       N=100,
       t=10,
       m=Uniform(30, 30),
       i=Uniform(-0.8, 0.8),
       neuron_type=LIF(),
       seed=0,
       dt=0.001,
       fPre=None,
       fEns=None,
       fS=DoubleExp(2e-2, 2e-1),
       dPreA=None,
       dPreB=None,
       dEns=None,
       ePreA=None,
       ePreB=None,
       eBio=None,
       stage=None,
       alpha=1e-6,
       eMax=1e0,
       stimA=lambda t: np.sin(t),
       stimB=lambda t: 0):

    with nengo.Network(seed=seed) as model:
        inptA = nengo.Node(stimA)
        inptB = nengo.Node(stimB)
        preInptA = nengo.Ensemble(NPre, 1, radius=3, max_rates=m, seed=seed)
        preInptB = nengo.Ensemble(NPre, 1, max_rates=m, seed=seed)
        ens = nengo.Ensemble(N,
                             1,
                             max_rates=m,
                             intercepts=i,
                             neuron_type=neuron_type,
                             seed=seed)
        tarEns = nengo.Ensemble(N,
                                1,
                                max_rates=m,
                                intercepts=i,
                                neuron_type=nengo.LIF(),
                                seed=seed)
        cpa = nengo.Connection(inptA, preInptA, synapse=None, seed=seed)
        cpb = nengo.Connection(inptB, preInptB, synapse=None, seed=seed)
        pInptA = nengo.Probe(inptA, synapse=None)
        pInptB = nengo.Probe(inptB, synapse=None)
        pPreInptA = nengo.Probe(preInptA.neurons, synapse=None)
        pPreInptB = nengo.Probe(preInptB.neurons, synapse=None)
        pEns = nengo.Probe(ens.neurons, synapse=None)
        pTarEns = nengo.Probe(tarEns.neurons, synapse=None)
        if stage == 1:
            c0b = nengo.Connection(preInptB,
                                   tarEns,
                                   synapse=fPre,
                                   solver=NoSolver(dPreB),
                                   seed=seed + 1)
            c1b = nengo.Connection(preInptB,
                                   ens,
                                   synapse=fPre,
                                   solver=NoSolver(dPreB),
                                   seed=seed + 1)
            learnEncoders(c1b, tarEns, fS, alpha=alpha, eMax=eMax)
        if stage == 2:
            c0a = nengo.Connection(preInptA,
                                   tarEns,
                                   synapse=fPre,
                                   solver=NoSolver(dPreA),
                                   seed=seed)
            c0b = nengo.Connection(preInptB,
                                   tarEns,
                                   synapse=fPre,
                                   solver=NoSolver(dPreB),
                                   seed=seed + 1)
            c1a = nengo.Connection(preInptA,
                                   ens,
                                   synapse=fPre,
                                   solver=NoSolver(dPreA),
                                   seed=seed)
            c1b = nengo.Connection(preInptB,
                                   ens,
                                   synapse=fPre,
                                   solver=NoSolver(dPreB),
                                   seed=seed + 1)
            learnEncoders(c1a, tarEns, fS, alpha=alpha, eMax=eMax)
        if stage == 3:
            c1a = nengo.Connection(preInptA,
                                   ens,
                                   synapse=fPre,
                                   solver=NoSolver(dPreA),
                                   seed=seed)
            c1b = nengo.Connection(preInptB,
                                   ens,
                                   synapse=fPre,
                                   solver=NoSolver(dPreB),
                                   seed=seed + 1)
        if stage == 4:
            preInptC = nengo.Ensemble(NPre, 1, max_rates=m, seed=seed)
            ens2 = nengo.Ensemble(N,
                                  1,
                                  max_rates=m,
                                  intercepts=i,
                                  neuron_type=neuron_type,
                                  seed=seed)
            ens3 = nengo.Ensemble(N,
                                  1,
                                  max_rates=m,
                                  intercepts=i,
                                  neuron_type=neuron_type,
                                  seed=seed)
            nengo.Connection(inptB, preInptC, synapse=fEns, seed=seed)
            c1a = nengo.Connection(preInptA,
                                   ens,
                                   synapse=fPre,
                                   solver=NoSolver(dPreA),
                                   seed=seed)
            c2b = nengo.Connection(preInptB,
                                   ens2,
                                   synapse=fPre,
                                   solver=NoSolver(dPreB),
                                   seed=seed + 1)
            c3 = nengo.Connection(ens2,
                                  ens,
                                  synapse=fEns,
                                  solver=NoSolver(dEns),
                                  seed=seed)
            c4a = nengo.Connection(preInptA,
                                   ens3,
                                   synapse=fPre,
                                   solver=NoSolver(dPreA),
                                   seed=seed)
            c4b = nengo.Connection(preInptC,
                                   ens3,
                                   synapse=fPre,
                                   solver=NoSolver(dPreB),
                                   seed=seed)
            learnEncoders(c3, ens3, fS, alpha=alpha / 10, eMax=eMax)
            pTarEns = nengo.Probe(ens3.neurons, synapse=None)
        if stage == 5:
            c1a = nengo.Connection(preInptA,
                                   ens,
                                   synapse=fPre,
                                   solver=NoSolver(dPreA),
                                   seed=seed)
            c5 = nengo.Connection(ens,
                                  ens,
                                  synapse=fEns,
                                  solver=NoSolver(dEns),
                                  seed=seed)

    with nengo.Simulator(model, seed=seed, dt=dt, progress_bar=False) as sim:
        if isinstance(neuron_type, Bio):
            if stage == 1:
                setWeights(c1b, dPreB, ePreB)
            if stage == 2:
                setWeights(c1a, dPreA, ePreA)
                setWeights(c1b, dPreB, ePreB)
            if stage == 3:
                setWeights(c1a, dPreA, ePreA)
                setWeights(c1b, dPreB, ePreB)
            if stage == 4:
                setWeights(c1a, dPreA, ePreA)
                setWeights(c2b, dPreB, ePreB)
                setWeights(c4a, dPreA, ePreA)
                setWeights(c4b, dPreB, ePreB)
                setWeights(c3, dEns, eBio)
            if stage == 5:
                setWeights(c1a, dPreA, ePreA)
                setWeights(c5, dEns, eBio)
            neuron.h.init()
            sim.run(t, progress_bar=True)
            reset_neuron(sim, model)
        else:
            sim.run(t, progress_bar=True)

    ePreB = c1b.e if stage == 1 else ePreB
    ePreA = c1a.e if stage == 2 else ePreA
    eBio = c3.e if stage == 4 else eBio

    return dict(
        times=sim.trange(),
        inptA=sim.data[pInptA],
        inptB=sim.data[pInptB],
        preInptA=sim.data[pPreInptA],
        preInptB=sim.data[pPreInptB],
        ens=sim.data[pEns],
        tarEns=sim.data[pTarEns],
        ePreA=ePreA,
        ePreB=ePreB,
        eBio=eBio,
    )
コード例 #5
0
def go(NPre=100,
       N=100,
       t=10,
       c=None,
       seed=1,
       dt=0.001,
       tTrans=0.01,
       stage=None,
       alpha=3e-7,
       eMax=1e-1,
       Tff=0.3,
       fPre=DoubleExp(1e-3, 1e-1),
       fNMDA=DoubleExp(10.6e-3, 285e-3),
       fGABA=DoubleExp(0.5e-3, 1.5e-3),
       fS=DoubleExp(1e-3, 1e-1),
       dPreA=None,
       dPreB=None,
       dPreC=None,
       dPreD=None,
       dFdfw=None,
       dEns=None,
       dOff=None,
       ePreAFdfw=None,
       ePreBEns=None,
       ePreCOff=None,
       eFdfwEns=None,
       eEnsEns=None,
       ePreDEns=None,
       eOffFdfw=None,
       stimA=lambda t: 0,
       stimB=lambda t: 0,
       stimC=lambda t: 0,
       stimD=lambda t: 0,
       DA=lambda t: 0):

    if not c: c = t
    with nengo.Network(seed=seed) as model:
        inptA = nengo.Node(stimA)
        inptB = nengo.Node(stimB)
        inptC = nengo.Node(stimC)
        inptD = nengo.Node(stimD)
        preA = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
        preB = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
        preC = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
        preD = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
        fdfw = nengo.Ensemble(N,
                              1,
                              neuron_type=Bio("Pyramidal", DA=DA),
                              seed=seed)
        ens = nengo.Ensemble(N,
                             1,
                             neuron_type=Bio("Pyramidal", DA=DA),
                             seed=seed + 1)
        off = nengo.Ensemble(N,
                             1,
                             neuron_type=Bio("Interneuron", DA=DA),
                             seed=seed + 3)
        tarFdfw = nengo.Ensemble(N,
                                 1,
                                 max_rates=Uniform(30, 30),
                                 intercepts=Uniform(-0.8, 0.8),
                                 seed=seed)
        tarEns = nengo.Ensemble(N,
                                1,
                                max_rates=Uniform(30, 30),
                                intercepts=Uniform(-0.8, 0.8),
                                seed=seed + 1)
        tarOff = nengo.Ensemble(N,
                                1,
                                max_rates=Uniform(30, 30),
                                intercepts=Uniform(0.2, 0.8),
                                encoders=Choice([[1]]),
                                seed=seed + 3)
        cA = nengo.Connection(inptA, preA, synapse=None, seed=seed)
        cB = nengo.Connection(inptB, preB, synapse=None, seed=seed)
        cC = nengo.Connection(inptC, preC, synapse=None, seed=seed)
        cD = nengo.Connection(inptD, preD, synapse=None, seed=seed)
        pInptA = nengo.Probe(inptA, synapse=None)
        pInptB = nengo.Probe(inptB, synapse=None)
        pInptC = nengo.Probe(inptC, synapse=None)
        pInptD = nengo.Probe(inptD, synapse=None)
        pPreA = nengo.Probe(preA.neurons, synapse=None)
        pPreB = nengo.Probe(preB.neurons, synapse=None)
        pPreC = nengo.Probe(preC.neurons, synapse=None)
        pPreD = nengo.Probe(preD.neurons, synapse=None)
        pFdfw = nengo.Probe(fdfw.neurons, synapse=None)
        pTarFdfw = nengo.Probe(tarFdfw.neurons, synapse=None)
        pEns = nengo.Probe(ens.neurons, synapse=None)
        pTarEns = nengo.Probe(tarEns.neurons, synapse=None)
        pOff = nengo.Probe(off.neurons, synapse=None)
        pTarOff = nengo.Probe(tarOff.neurons, synapse=None)
        if stage == 0:
            nengo.Connection(preD, tarEns, synapse=fPre, seed=seed)
            c0 = nengo.Connection(preD,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPreD),
                                  seed=seed)
            learnEncoders(c0,
                          tarEns,
                          fS,
                          alpha=10 * alpha,
                          eMax=10 * eMax,
                          tTrans=tTrans)
        if stage == 1:
            nengo.Connection(inptA, tarFdfw, synapse=fPre, seed=seed)
            nengo.Connection(inptB, tarEns, synapse=fPre, seed=seed)
            nengo.Connection(inptC, tarOff, synapse=fPre, seed=seed)
            c0 = nengo.Connection(preD,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPreD),
                                  seed=seed)
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPreA),
                                  seed=seed)
            c2 = nengo.Connection(preB,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPreB),
                                  seed=seed)
            c3 = nengo.Connection(preC,
                                  off,
                                  synapse=fPre,
                                  solver=NoSolver(dPreC),
                                  seed=seed)
            learnEncoders(c1,
                          tarFdfw,
                          fS,
                          alpha=3 * alpha,
                          eMax=3 * eMax,
                          tTrans=tTrans)
            learnEncoders(c2,
                          tarEns,
                          fS,
                          alpha=10 * alpha,
                          eMax=10 * eMax,
                          tTrans=tTrans)
            learnEncoders(c3,
                          tarOff,
                          fS,
                          alpha=3 * alpha,
                          eMax=3 * eMax,
                          tTrans=tTrans)
        if stage == 2:
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPreA),
                                  seed=seed)
            c2 = nengo.Connection(preC,
                                  off,
                                  synapse=fPre,
                                  solver=NoSolver(dPreC),
                                  seed=seed)
        if stage == 3:
            cB.synapse = fNMDA
            ff = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
            fb = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
            nengo.Connection(inptA, ff, synapse=fPre, seed=seed)
            nengo.Connection(inptB, fb, synapse=fNMDA, seed=seed)
            nengo.Connection(fb, tarEns, synapse=fPre, seed=seed)
            nengo.Connection(ff,
                             tarEns,
                             synapse=fNMDA,
                             transform=Tff,
                             seed=seed)
            c0 = nengo.Connection(preD,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPreD),
                                  seed=seed)
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPreA),
                                  seed=seed)
            c2 = nengo.Connection(preB,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPreB),
                                  seed=seed)
            c3 = nengo.Connection(fdfw,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dFdfw),
                                  seed=seed)
            learnEncoders(c3,
                          tarEns,
                          fS,
                          alpha=3 * alpha,
                          eMax=3 * eMax,
                          tTrans=tTrans)
        if stage == 4:
            cB.synapse = fNMDA
            c0 = nengo.Connection(preD,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPreD),
                                  seed=seed)
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPreA),
                                  seed=seed)
            c2 = nengo.Connection(preB,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPreB),
                                  seed=seed)
            c3 = nengo.Connection(fdfw,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dFdfw),
                                  seed=seed)
        if stage == 5:
            preB2 = nengo.Ensemble(NPre,
                                   1,
                                   max_rates=Uniform(30, 30),
                                   seed=seed)
            ens2 = nengo.Ensemble(N,
                                  1,
                                  neuron_type=Bio("Pyramidal", DA=DA),
                                  seed=seed + 1)
            ens3 = nengo.Ensemble(N,
                                  1,
                                  neuron_type=Bio("Pyramidal", DA=DA),
                                  seed=seed + 1)
            nengo.Connection(inptB, preB2, synapse=fNMDA, seed=seed)
            c0a = nengo.Connection(preD,
                                   ens,
                                   synapse=fPre,
                                   solver=NoSolver(dPreD),
                                   seed=seed)
            c0b = nengo.Connection(preD,
                                   ens2,
                                   synapse=fPre,
                                   solver=NoSolver(dPreD),
                                   seed=seed)
            c0c = nengo.Connection(preD,
                                   ens3,
                                   synapse=fPre,
                                   solver=NoSolver(dPreD),
                                   seed=seed)
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPreA),
                                  seed=seed)
            c2 = nengo.Connection(fdfw,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dFdfw),
                                  seed=seed)
            c3 = nengo.Connection(preB,
                                  ens2,
                                  synapse=fPre,
                                  solver=NoSolver(dPreB),
                                  seed=seed)
            c4 = nengo.Connection(ens2,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dEns),
                                  seed=seed)
            c5 = nengo.Connection(fdfw,
                                  ens3,
                                  synapse=NMDA(),
                                  solver=NoSolver(dFdfw),
                                  seed=seed)
            c6 = nengo.Connection(preB2,
                                  ens3,
                                  synapse=fPre,
                                  solver=NoSolver(dPreB),
                                  seed=seed)
            learnEncoders(c4, ens3, fS, alpha=alpha, eMax=eMax, tTrans=tTrans)
            pTarEns = nengo.Probe(ens3.neurons, synapse=None)
        if stage == 9:
            c0 = nengo.Connection(preD,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPreD),
                                  seed=seed)
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPreA),
                                  seed=seed)
            c2 = nengo.Connection(fdfw,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dFdfw),
                                  seed=seed)
            c3 = nengo.Connection(ens,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dEns),
                                  seed=seed)
            c6 = nengo.Connection(preC,
                                  off,
                                  synapse=fPre,
                                  solver=NoSolver(dPreC),
                                  seed=seed)
            c7 = nengo.Connection(off,
                                  fdfw,
                                  synapse=GABA(),
                                  solver=NoSolver(dOff),
                                  seed=seed)

    with nengo.Simulator(model, seed=seed, dt=dt, progress_bar=False) as sim:
        if stage == 0:
            setWeights(c0, dPreD, ePreDEns)
        if stage == 1:
            setWeights(c0, dPreD, ePreDEns)
            setWeights(c1, dPreA, ePreAFdfw)
            setWeights(c2, dPreB, ePreBEns)
            setWeights(c3, dPreC, ePreCOff)
        if stage == 2:
            setWeights(c1, dPreA, ePreAFdfw)
            setWeights(c2, dPreC, ePreCOff)
        if stage == 3:
            setWeights(c0, dPreD, ePreDEns)
            setWeights(c1, dPreA, ePreAFdfw)
            setWeights(c2, dPreB, ePreBEns)
            setWeights(c3, dFdfw, eFdfwEns)
        if stage == 4:
            setWeights(c0, dPreD, ePreDEns)
            setWeights(c1, dPreA, ePreAFdfw)
            setWeights(c2, dPreB, ePreBEns)
            setWeights(c3, dFdfw, eFdfwEns)
        if stage == 5:
            setWeights(c0a, dPreD, ePreDEns)
            setWeights(c0b, dPreD, ePreDEns)
            setWeights(c0c, dPreD, ePreDEns)
            setWeights(c1, dPreA, ePreAFdfw)
            setWeights(c2, dFdfw, eFdfwEns)
            setWeights(c3, dPreB, ePreBEns)
            setWeights(c4, dEns, eEnsEns)
            setWeights(c5, dFdfw, eFdfwEns)
            setWeights(c6, dPreB, ePreBEns)
        if stage == 9:
            setWeights(c0, dPreD, ePreDEns)
            setWeights(c1, dPreA, ePreAFdfw)
            setWeights(c2, dFdfw, eFdfwEns)
            setWeights(c3, dEns, eEnsEns)
            setWeights(c6, dPreC, ePreCOff)
            setWeights(c7, dOff, eOffFdfw)

        neuron.h.init()
        sim.run(t, progress_bar=True)
        reset_neuron(sim, model)

    ePreDEns = c0.e if stage == 0 else ePreDEns
    ePreAFdfw = c1.e if stage == 1 else ePreAFdfw
    ePreBEns = c2.e if stage == 1 else ePreBEns
    ePreCOff = c3.e if stage == 1 else ePreCOff
    eFdfwEns = c3.e if stage == 3 else eFdfwEns
    eEnsEns = c4.e if stage == 5 else eEnsEns

    return dict(
        times=sim.trange(),
        inptA=sim.data[pInptA],
        inptB=sim.data[pInptB],
        inptC=sim.data[pInptC],
        inptD=sim.data[pInptD],
        preA=sim.data[pPreA],
        preB=sim.data[pPreB],
        preC=sim.data[pPreC],
        preD=sim.data[pPreD],
        fdfw=sim.data[pFdfw],
        ens=sim.data[pEns],
        off=sim.data[pOff],
        tarFdfw=sim.data[pTarFdfw],
        tarEns=sim.data[pTarEns],
        tarOff=sim.data[pTarOff],
        ePreAFdfw=ePreAFdfw,
        ePreBEns=ePreBEns,
        ePreCOff=ePreCOff,
        ePreDEns=ePreDEns,
        eFdfwEns=eFdfwEns,
        eEnsEns=eEnsEns,
        eOffFdfw=eOffFdfw,
    )
コード例 #6
0
def go(NPre=100, N=100, t=10, c=None, seed=0, dt=0.001, Tff=0.3, tTrans=0.01,
        stage=None, alpha=3e-7, eMax=1e-1,
        fPre=DoubleExp(1e-3, 1e-1), fNMDA=DoubleExp(10.6e-3, 285e-3), fS=DoubleExp(1e-3, 1e-1),
        dPreA=None, dPreB=None, dPreC=None, dFdfw=None, dBio=None, dNeg=None, dInh=None,
        ePreA=None, ePreB=None, ePreC=None, eFdfw=None, eBio=None, eNeg=None, eInh=None,
        stimA=lambda t: 0, stimB=lambda t: 0, stimC=lambda t: 0, DA=lambda t: 0):

    if not c: c = t
    with nengo.Network(seed=seed) as model:
        inptA = nengo.Node(stimA)
        inptB = nengo.Node(stimB)
        inptC = nengo.Node(stimC)
        preA = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
        preB = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
        preC = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
        fdfw = nengo.Ensemble(N, 1, neuron_type=Bio("Pyramidal", DA=DA), seed=seed)
        ens = nengo.Ensemble(N, 1, neuron_type=Bio("Pyramidal", DA=DA), seed=seed+1)
        inh = nengo.Ensemble(N, 1, neuron_type=Bio("Interneuron", DA=DA), seed=seed+2)
        tarFdfw = nengo.Ensemble(N, 1, max_rates=Uniform(30, 30), intercepts=Uniform(-0.8, 0.8), neuron_type=nengo.LIF(), seed=seed)
        tarEns = nengo.Ensemble(N, 1, max_rates=Uniform(30, 30), intercepts=Uniform(-0.8, 0.8), neuron_type=nengo.LIF(), seed=seed+1)
        tarInh = nengo.Ensemble(N, 1, max_rates=Uniform(30, 30), intercepts=Uniform(0.2, 0.8), encoders=Choice([[1]]), neuron_type=nengo.LIF(), seed=seed+2)
        cA = nengo.Connection(inptA, preA, synapse=None, seed=seed)
        cB = nengo.Connection(inptB, preB, synapse=None, seed=seed)
        cC = nengo.Connection(inptC, preC, synapse=None, seed=seed)
        pInptA = nengo.Probe(inptA, synapse=None)
        pInptB = nengo.Probe(inptB, synapse=None)
        pInptC = nengo.Probe(inptC, synapse=None)
        pPreA = nengo.Probe(preA.neurons, synapse=None)
        pPreB = nengo.Probe(preB.neurons, synapse=None)
        pPreC = nengo.Probe(preC.neurons, synapse=None)
        pFdfw = nengo.Probe(fdfw.neurons, synapse=None)
        pTarFdfw = nengo.Probe(tarFdfw.neurons, synapse=None)
        pEns = nengo.Probe(ens.neurons, synapse=None)
        pTarEns = nengo.Probe(tarEns.neurons, synapse=None)
        pInh = nengo.Probe(inh.neurons, synapse=None)
        pTarInh = nengo.Probe(tarInh.neurons, synapse=None)
        if stage==1:
            nengo.Connection(inptA, tarFdfw, synapse=fPre, seed=seed)
            nengo.Connection(inptB, tarEns, synapse=fPre, seed=seed)
            nengo.Connection(inptC, tarInh, synapse=fPre, seed=seed)
            c1 = nengo.Connection(preA, fdfw, synapse=fPre, solver=NoSolver(dPreA), seed=seed)
            c2 = nengo.Connection(preB, ens, synapse=fPre, solver=NoSolver(dPreB), seed=seed)
            c3 = nengo.Connection(preC, inh, synapse=fPre, solver=NoSolver(dPreC), seed=seed)
            learnEncoders(c1, tarFdfw, fS, alpha=alpha, eMax=eMax, tTrans=tTrans)
            learnEncoders(c2, tarEns, fS, alpha=3*alpha, eMax=10*eMax, tTrans=tTrans)
            learnEncoders(c3, tarInh, fS, alpha=alpha/3, eMax=eMax, tTrans=tTrans)
        if stage==2:
            c1 = nengo.Connection(preA, fdfw, synapse=fPre, solver=NoSolver(dPreA), seed=seed)
            c2 = nengo.Connection(preC, inh, synapse=fPre, solver=NoSolver(dPreC), seed=seed)
        if stage==3:
            cB.synapse = fNMDA
            nengo.Connection(inptA, tarFdfw, synapse=fPre, seed=seed)
            nengo.Connection(inptB, tarEns, synapse=fPre, seed=seed)
            nengo.Connection(tarFdfw, tarEns, synapse=fNMDA, transform=Tff, seed=seed)
            c1 = nengo.Connection(preA, fdfw, synapse=fPre, solver=NoSolver(dPreA), seed=seed)
            c2 = nengo.Connection(preB, ens, synapse=fPre, solver=NoSolver(dPreB), seed=seed)
            c3 = nengo.Connection(fdfw, ens, synapse=NMDA(), solver=NoSolver(dFdfw), seed=seed)
            learnEncoders(c3, tarEns, fS, alpha=alpha, eMax=eMax, tTrans=tTrans)
        if stage==4:
            cB.synapse = fNMDA
            c1 = nengo.Connection(preA, fdfw, synapse=fPre, solver=NoSolver(dPreA), seed=seed)
            c2 = nengo.Connection(preB, ens, synapse=fPre, solver=NoSolver(dPreB), seed=seed)
            c3 = nengo.Connection(fdfw, ens, synapse=NMDA(), solver=NoSolver(dFdfw), seed=seed)
        if stage==5:
            preB2 = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
            ens2 = nengo.Ensemble(N, 1, neuron_type=Bio("Pyramidal", DA=DA), seed=seed+1)
            ens3 = nengo.Ensemble(N, 1, neuron_type=Bio("Pyramidal", DA=DA), seed=seed+1)
            nengo.Connection(inptB, preB2, synapse=fNMDA, seed=seed)
            c1 = nengo.Connection(preA, fdfw, synapse=fPre, solver=NoSolver(dPreA), seed=seed)
            c2 = nengo.Connection(fdfw, ens, synapse=NMDA(), solver=NoSolver(dFdfw), seed=seed)
            c3 = nengo.Connection(preB, ens2, synapse=fPre, solver=NoSolver(dPreB), seed=seed)
            c4 = nengo.Connection(ens2, ens, synapse=NMDA(), solver=NoSolver(dBio), seed=seed)
            c5 = nengo.Connection(fdfw, ens3, synapse=NMDA(), solver=NoSolver(dFdfw), seed=seed)
            c6 = nengo.Connection(preB2, ens3, synapse=fPre, solver=NoSolver(dPreB), seed=seed)
            learnEncoders(c4, ens3, fS, alpha=alpha, eMax=eMax, tTrans=tTrans)
            pTarEns = nengo.Probe(ens3.neurons, synapse=None)
        if stage==6:
            preA2 = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
            fdfw2 = nengo.Ensemble(N, 1, neuron_type=Bio("Pyramidal", DA=DA), seed=seed)
            fdfw3 = nengo.Ensemble(N, 1, neuron_type=Bio("Pyramidal", DA=DA), seed=seed)
            fdfw4 = nengo.Ensemble(N, 1, neuron_type=Bio("Pyramidal", DA=DA), seed=seed)
            tarFdfw4 = nengo.Ensemble(N, 1, max_rates=Uniform(30, 30), intercepts=Uniform(-0.8, 0.8), neuron_type=nengo.LIF(), seed=seed)
            nengo.Connection(inptA, tarFdfw4, synapse=fPre, seed=seed)
            nengo.Connection(inptB, preA2, synapse=fNMDA, seed=seed)
            nengo.Connection(inptC, tarInh, synapse=fPre, seed=seed)
            nengo.Connection(tarInh, tarFdfw4.neurons, synapse=None, transform=-1e2*np.ones((N, 1)), seed=seed)
            c1 = nengo.Connection(preB, ens, synapse=fPre, solver=NoSolver(dPreB), seed=seed)
            c2 = nengo.Connection(ens, fdfw2, synapse=NMDA(), solver=NoSolver(dNeg), seed=seed)
            c3 = nengo.Connection(preA2, fdfw3, synapse=fPre, solver=NoSolver(dPreA), seed=seed)
            c4 = nengo.Connection(preA, fdfw4, synapse=fPre, solver=NoSolver(dPreA), seed=seed)
            c5 = nengo.Connection(preC, inh, synapse=fPre, solver=NoSolver(dPreC), seed=seed)
            c6 = nengo.Connection(inh, fdfw4, synapse=GABA(), solver=NoSolver(dInh), seed=seed)
            learnEncoders(c2, fdfw3, fS, alpha=alpha, eMax=eMax, tTrans=tTrans)
            learnEncoders(c6, tarFdfw4, fS, alpha=1e3*alpha, eMax=1e3*eMax, tTrans=tTrans, inh=True)
            pFdfw2 = nengo.Probe(fdfw2.neurons, synapse=None)
            pFdfw4 = nengo.Probe(fdfw4.neurons, synapse=None)
            pTarFdfw2 = nengo.Probe(fdfw3.neurons, synapse=None)
            pTarFdfw4 = nengo.Probe(tarFdfw4.neurons, synapse=None)
        if stage==7:
            c1 = nengo.Connection(preA, fdfw, synapse=fPre, solver=NoSolver(dPreA), seed=seed)
            c2 = nengo.Connection(fdfw, ens, synapse=NMDA(), solver=NoSolver(dFdfw), seed=seed)
            c3 = nengo.Connection(ens, ens, synapse=NMDA(), solver=NoSolver(dBio), seed=seed)
            c4 = nengo.Connection(ens, fdfw, synapse=NMDA(), solver=NoSolver(dNeg), seed=seed)
            c5 = nengo.Connection(preC, inh, synapse=fPre, solver=NoSolver(dPreC), seed=seed)
            c6 = nengo.Connection(inh, fdfw, synapse=GABA(), solver=NoSolver(dInh), seed=seed)

    with nengo.Simulator(model, seed=seed, dt=dt, progress_bar=False) as sim:
        if stage==1:
            setWeights(c1, dPreA, ePreA)
            setWeights(c2, dPreB, ePreB)
            setWeights(c3, dPreC, ePreC)
        if stage==2:
            setWeights(c1, dPreA, ePreA)
            setWeights(c2, dPreC, ePreC)
        if stage==3:
            setWeights(c1, dPreA, ePreA)
            setWeights(c2, dPreB, ePreB)
            setWeights(c3, dFdfw, eFdfw)
        if stage==4:
            setWeights(c1, dPreA, ePreA)
            setWeights(c2, dPreB, ePreB)
            setWeights(c3, dFdfw, eFdfw)
        if stage==5:
            setWeights(c1, dPreA, ePreA)
            setWeights(c2, dFdfw, eFdfw)
            setWeights(c3, dPreB, ePreB)
            setWeights(c4, dBio, eBio)
            setWeights(c5, dFdfw, eFdfw)
            setWeights(c6, dPreB, ePreB)
        if stage==6:
            setWeights(c1, dPreB, ePreB)
            setWeights(c2, dNeg, eNeg)
            setWeights(c3, dPreA, ePreA)
            setWeights(c4, dPreA, ePreA)
            setWeights(c5, dPreC, ePreC)
            setWeights(c6, dInh, eInh)
        if stage==7:
            setWeights(c1, dPreA, ePreA)
            setWeights(c2, dFdfw, eFdfw)
            setWeights(c3, dBio, eBio)
            setWeights(c4, dNeg, eNeg)
            setWeights(c5, dPreC, ePreC)
            setWeights(c6, dInh, eInh)
        neuron.h.init()
        sim.run(t, progress_bar=True)
        reset_neuron(sim, model) 

    ePreA = c1.e if stage==1 else ePreA
    ePreB = c2.e if stage==1 else ePreB
    ePreC = c3.e if stage==1 else ePreC
    eFdfw = c3.e if stage==3 else eFdfw
    eBio = c4.e if stage==5 else eBio
    eNeg = c2.e if stage==6 else eNeg
    eInh = c6.e if stage==6 else eInh

    return dict(
        times=sim.trange(),
        inptA=sim.data[pInptA],
        inptB=sim.data[pInptB],
        inptC=sim.data[pInptC],
        preA=sim.data[pPreA],
        preB=sim.data[pPreB],
        preC=sim.data[pPreC],
        fdfw=sim.data[pFdfw],
        ens=sim.data[pEns],
        inh=sim.data[pInh],
        tarFdfw=sim.data[pTarFdfw],
        tarEns=sim.data[pTarEns],
        tarInh=sim.data[pTarInh],
        fdfw2=sim.data[pFdfw2] if stage==6 else None,
        fdfw4=sim.data[pFdfw4] if stage==6 else None,
        tarFdfw2=sim.data[pTarFdfw2] if stage==6 else None,
        tarFdfw4=sim.data[pTarFdfw4] if stage==6 else None,
        ePreA=ePreA,
        ePreB=ePreB,
        ePreC=ePreC,
        eFdfw=eFdfw,
        eBio=eBio,
        eNeg=eNeg,
        eInh=eInh,
    )
コード例 #7
0
def go(NPre=100,
       N=100,
       t=10,
       m=Uniform(30, 30),
       i=Uniform(-0.8, 0.8),
       seed=0,
       dt=0.001,
       f=DoubleExp(1e-3, 1e-2),
       fS=DoubleExp(1e-3, 1e-1),
       neuron_type=LIF(),
       d1a=None,
       d1b=None,
       d2=None,
       f1a=None,
       f1b=None,
       f2=None,
       e1a=None,
       e1b=None,
       e2=None,
       l1a=False,
       l1b=False,
       l2=False,
       l3=False,
       test=False,
       stim=lambda t: np.sin(t),
       stim2=lambda t: 0):

    with nengo.Network(seed=seed) as model:
        inpt = nengo.Node(stim)
        intg = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
        preInpt = nengo.Ensemble(NPre, 1, radius=3, max_rates=m, seed=seed)
        preIntg = nengo.Ensemble(NPre, 1, max_rates=m, seed=seed)
        ens = nengo.Ensemble(N,
                             1,
                             max_rates=m,
                             intercepts=i,
                             neuron_type=neuron_type,
                             seed=seed)
        nengo.Connection(inpt, intg, synapse=1 / s, seed=seed)
        c0a = nengo.Connection(inpt, preInpt, synapse=None, seed=seed)
        c0b = nengo.Connection(intg, preIntg, synapse=None, seed=seed)
        c1a = nengo.Connection(preInpt,
                               ens,
                               synapse=f1a,
                               solver=NoSolver(d1a),
                               seed=seed)
        pInpt = nengo.Probe(inpt, synapse=None)
        pIntg = nengo.Probe(intg, synapse=None)
        pPreInpt = nengo.Probe(preInpt.neurons, synapse=None)
        pPreIntg = nengo.Probe(preIntg.neurons, synapse=None)
        pEns = nengo.Probe(ens.neurons, synapse=None)
        if l1b:  # preIntg-to-ens
            tarEns = nengo.Ensemble(N,
                                    1,
                                    max_rates=m,
                                    intercepts=i,
                                    neuron_type=nengo.LIF(),
                                    seed=seed)
            nengo.Connection(preIntg,
                             tarEns,
                             synapse=f1b,
                             solver=NoSolver(d1b),
                             seed=seed + 1)
            c1b = nengo.Connection(preIntg,
                                   ens,
                                   synapse=f1b,
                                   solver=NoSolver(d1b),
                                   seed=seed + 1)
            learnEncoders(c1b, tarEns, fS)
            pTarEns = nengo.Probe(tarEns.neurons, synapse=None)
        if l1a:  # preInpt-to-ens, given preIntg-to-ens
            inpt2 = nengo.Node(stim2)
            tarEns = nengo.Ensemble(N,
                                    1,
                                    max_rates=m,
                                    intercepts=i,
                                    neuron_type=nengo.LIF(),
                                    seed=seed)
            nengo.Connection(preInpt,
                             tarEns,
                             synapse=f1a,
                             solver=NoSolver(d1a),
                             seed=seed)
            c0b.transform = 0
            nengo.Connection(inpt2, preIntg, synapse=None, seed=seed)
            nengo.Connection(preIntg,
                             tarEns,
                             synapse=f1b,
                             solver=NoSolver(d1b),
                             seed=seed + 1)
            c1b = nengo.Connection(preIntg,
                                   ens,
                                   synapse=f1b,
                                   solver=NoSolver(d1b),
                                   seed=seed + 1)
            learnEncoders(c1a, tarEns, fS)
            pTarEns = nengo.Probe(tarEns.neurons, synapse=None)
        if l2:  # ens readout, given preIntg and preInpt
            c1b = nengo.Connection(preIntg,
                                   ens,
                                   synapse=f1b,
                                   solver=NoSolver(d1b),
                                   seed=seed + 1)
        if l3:  # ens2-to-ens, given preInpt-ens and preIntg-ens2
            ens2 = nengo.Ensemble(N,
                                  1,
                                  max_rates=m,
                                  intercepts=i,
                                  neuron_type=neuron_type,
                                  seed=seed)
            c0a.synapse = f
            c2a = nengo.Connection(preInpt,
                                   ens2,
                                   synapse=f1a,
                                   solver=NoSolver(d1a),
                                   seed=seed)
            c2b = nengo.Connection(preIntg,
                                   ens2,
                                   synapse=f1b,
                                   solver=NoSolver(d1b),
                                   seed=seed + 1)
            c3 = nengo.Connection(ens2,
                                  ens,
                                  synapse=f2,
                                  solver=NoSolver(d2),
                                  seed=seed)
            learnEncoders(c3, ens2, fS)
            pTarEns2 = nengo.Probe(ens2.neurons, synapse=None)
        if test:
            c5 = nengo.Connection(ens,
                                  ens,
                                  synapse=f2,
                                  solver=NoSolver(d2),
                                  seed=seed)

    with nengo.Simulator(model, seed=seed, dt=dt, progress_bar=False) as sim:
        if isinstance(neuron_type, Bio):
            if l1b:
                setWeights(c1b, d1b, e1b)
            if l1a:
                setWeights(c1a, d1a, e1a)
                setWeights(c1b, d1b, e1b)
            if l2:
                setWeights(c1a, d1a, e1a)
                setWeights(c1b, d1b, e1b)
            if l3:
                setWeights(c1a, d1a, e1a)
                setWeights(c2a, d1a, e1a)
                setWeights(c2b, d1b, e1b)
                setWeights(c3, d2, e2)
            if test:
                setWeights(c1a, d1a, e1a)
                setWeights(c5, d2, e2)
            neuron.h.init()
            sim.run(t, progress_bar=True)
            reset_neuron(sim, model)
        else:
            sim.run(t, progress_bar=True)

    e1a = c1a.e if l1a else e1a
    e1b = c1b.e if l1b else e1b
    e2 = c3.e if l3 else e2

    return dict(
        times=sim.trange(),
        inpt=sim.data[pInpt],
        intg=sim.data[pIntg],
        preInpt=sim.data[pPreInpt],
        preIntg=sim.data[pPreIntg],
        ens=sim.data[pEns],
        tarEns=sim.data[pTarEns] if l1a or l1b else None,
        tarEns2=sim.data[pTarEns2] if l3 else None,
        e1a=e1a,
        e1b=e1b,
        e2=e2,
    )
コード例 #8
0
def go(NPre=300,
       NBias=100,
       N=30,
       t=10,
       seed=1,
       dt=0.001,
       Tff=0.3,
       tTrans=0.01,
       stage=None,
       alpha=3e-7,
       eMax=1e-1,
       fPre=DoubleExp(1e-3, 1e-1),
       fNMDA=DoubleExp(10.6e-3, 285e-3),
       fGABA=DoubleExp(0.5e-3, 1.5e-3),
       fS=DoubleExp(1e-3, 1e-1),
       dPre=None,
       dFdfw=None,
       dEns=None,
       dBias=None,
       ePreFdfw=None,
       ePreEns=None,
       ePreBias=None,
       eFdfwEns=None,
       eBiasEns=None,
       eEnsEns=None,
       stimA=lambda t: 0,
       stimB=lambda t: 0,
       stimC=lambda t: 0.01,
       DA=lambda t: 0):

    with nengo.Network(seed=seed) as model:
        inptA = nengo.Node(stimA)
        inptB = nengo.Node(stimB)
        inptC = nengo.Node(stimC)
        preA = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
        preB = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
        preC = nengo.Ensemble(NPre, 1, max_rates=Uniform(30, 30), seed=seed)
        fdfw = nengo.Ensemble(N,
                              1,
                              neuron_type=Bio("Pyramidal", DA=DA),
                              seed=seed)
        ens = nengo.Ensemble(N,
                             1,
                             neuron_type=Bio("Pyramidal", DA=DA),
                             seed=seed + 1)
        bias = nengo.Ensemble(NBias,
                              1,
                              neuron_type=Bio("Interneuron", DA=DA),
                              seed=seed + 2)
        tarFdfw = nengo.Ensemble(N,
                                 1,
                                 max_rates=Uniform(30, 30),
                                 intercepts=Uniform(-0.8, 0.8),
                                 seed=seed)
        tarEns = nengo.Ensemble(N,
                                1,
                                max_rates=Uniform(30, 30),
                                intercepts=Uniform(-0.8, 0.8),
                                seed=seed + 1)
        tarBias = nengo.Ensemble(NBias,
                                 1,
                                 max_rates=Uniform(30, 30),
                                 intercepts=Uniform(-0.8, -0.2),
                                 encoders=Choice([[1]]),
                                 seed=seed + 2)
        cA = nengo.Connection(inptA, preA, synapse=None, seed=seed)
        cB = nengo.Connection(inptB, preB, synapse=None, seed=seed)
        cC = nengo.Connection(inptC, preC, synapse=None, seed=seed)
        pInptA = nengo.Probe(inptA, synapse=None)
        pInptB = nengo.Probe(inptB, synapse=None)
        pInptC = nengo.Probe(inptC, synapse=None)
        pPreA = nengo.Probe(preA.neurons, synapse=None)
        pPreB = nengo.Probe(preB.neurons, synapse=None)
        pPreC = nengo.Probe(preC.neurons, synapse=None)
        pFdfw = nengo.Probe(fdfw.neurons, synapse=None)
        pTarFdfw = nengo.Probe(tarFdfw.neurons, synapse=None)
        pEns = nengo.Probe(ens.neurons, synapse=None)
        pTarEns = nengo.Probe(tarEns.neurons, synapse=None)
        pBias = nengo.Probe(bias.neurons, synapse=None)
        pTarBias = nengo.Probe(tarBias.neurons, synapse=None)
        if stage == 0:  # readout decoders for [preA, preB, preC]
            pass
        if stage == 1:  # encoders for [preA, preC] to [fdfw, bias]
            nengo.Connection(inptA, tarFdfw, synapse=fPre, seed=seed)
            nengo.Connection(inptC, tarBias, synapse=fPre, seed=seed)
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c2 = nengo.Connection(preC,
                                  bias,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            learnEncoders(c1,
                          tarFdfw,
                          fS,
                          alpha=3 * alpha,
                          eMax=3 * eMax,
                          tTrans=tTrans)
            learnEncoders(c2,
                          tarBias,
                          fS,
                          alpha=alpha,
                          eMax=eMax,
                          tTrans=tTrans)
        if stage == 2:  # readout decoders for fdfw and bias
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c2 = nengo.Connection(preC,
                                  bias,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
        if stage == 3:  # encoders for [bias] to ens
            # nengo.Connection(inptC, tarBias, synapse=fPre, seed=seed)
            nengo.Connection(inptC, tarEns, synapse=fGABA, seed=seed)
            c1 = nengo.Connection(preC,
                                  bias,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c2 = nengo.Connection(bias,
                                  ens,
                                  synapse=GABA(),
                                  solver=NoSolver(dBias),
                                  seed=seed)
            learnEncoders(c2,
                          tarEns,
                          fS,
                          alpha=1e3 * alpha,
                          eMax=1e3 * eMax,
                          tTrans=tTrans)
        if stage == 4:  # encoders for [preB] to [ens]
            # nengo.Connection(inptC, tarBias, synapse=fPre, seed=seed)
            nengo.Connection(inptC, tarEns, synapse=fGABA, seed=seed)
            nengo.Connection(inptB, tarEns, synapse=fPre, seed=seed)
            c1 = nengo.Connection(preC,
                                  bias,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c2 = nengo.Connection(bias,
                                  ens,
                                  synapse=GABA(),
                                  solver=NoSolver(dBias),
                                  seed=seed)
            c3 = nengo.Connection(preB,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            learnEncoders(c3,
                          tarEns,
                          fS,
                          alpha=3 * alpha,
                          eMax=3 * eMax,
                          tTrans=tTrans)
        if stage == 5:  # encoders for [fdfw] to ens
            cB.synapse = fNMDA
            tarPreA = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
            tarPreB = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
            tarPreC = nengo.Ensemble(1, 1, neuron_type=nengo.Direct())
            nengo.Connection(inptA, tarPreA, synapse=fPre, seed=seed)
            nengo.Connection(inptB, tarPreB, synapse=fNMDA, seed=seed)
            nengo.Connection(inptC, tarPreC, synapse=fPre, seed=seed)
            nengo.Connection(tarPreA,
                             tarEns,
                             synapse=fNMDA,
                             transform=Tff,
                             seed=seed)
            nengo.Connection(tarPreB, tarEns, synapse=fPre, seed=seed)
            nengo.Connection(tarPreC, tarEns, synapse=fGABA, seed=seed)
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c2 = nengo.Connection(preB,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c3 = nengo.Connection(preC,
                                  bias,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c4 = nengo.Connection(fdfw,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dFdfw),
                                  seed=seed)
            c5 = nengo.Connection(bias,
                                  ens,
                                  synapse=GABA(),
                                  solver=NoSolver(dBias),
                                  seed=seed)
            learnEncoders(c4,
                          tarEns,
                          fS,
                          alpha=3 * alpha,
                          eMax=3 * eMax,
                          tTrans=tTrans)
        if stage == 6:  # readout decoders for ens
            cB.synapse = fNMDA
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c2 = nengo.Connection(preB,
                                  ens,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c3 = nengo.Connection(preC,
                                  bias,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c4 = nengo.Connection(fdfw,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dFdfw),
                                  seed=seed)
            c5 = nengo.Connection(bias,
                                  ens,
                                  synapse=GABA(),
                                  solver=NoSolver(dBias),
                                  seed=seed)
        if stage == 7:  # encoders from ens to ens
            preB2 = nengo.Ensemble(NPre,
                                   1,
                                   max_rates=Uniform(30, 30),
                                   seed=seed)
            ens2 = nengo.Ensemble(N,
                                  1,
                                  neuron_type=Bio("Pyramidal", DA=DA),
                                  seed=seed + 1)  # acts as preB input to ens
            ens3 = nengo.Ensemble(N,
                                  1,
                                  neuron_type=Bio("Pyramidal", DA=DA),
                                  seed=seed + 1)  # acts as tarEns
            nengo.Connection(inptB, preB2, synapse=fNMDA, seed=seed)
            pTarEns = nengo.Probe(ens3.neurons, synapse=None)
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c2 = nengo.Connection(preB,
                                  ens2,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c3 = nengo.Connection(preB2,
                                  ens3,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c4 = nengo.Connection(preC,
                                  bias,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c5 = nengo.Connection(fdfw,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dFdfw),
                                  seed=seed)
            c6 = nengo.Connection(fdfw,
                                  ens3,
                                  synapse=NMDA(),
                                  solver=NoSolver(dFdfw),
                                  seed=seed)
            c7 = nengo.Connection(bias,
                                  ens,
                                  synapse=GABA(),
                                  solver=NoSolver(dBias),
                                  seed=seed)
            c8 = nengo.Connection(bias,
                                  ens2,
                                  synapse=GABA(),
                                  solver=NoSolver(dBias),
                                  seed=seed)
            c9 = nengo.Connection(bias,
                                  ens3,
                                  synapse=GABA(),
                                  solver=NoSolver(dBias),
                                  seed=seed)
            c10 = nengo.Connection(ens2,
                                   ens,
                                   synapse=NMDA(),
                                   solver=NoSolver(dEns),
                                   seed=seed)
            learnEncoders(c10, ens3, fS, alpha=alpha, eMax=eMax, tTrans=tTrans)
        if stage == 8:  # test
            c1 = nengo.Connection(preA,
                                  fdfw,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c2 = nengo.Connection(preC,
                                  bias,
                                  synapse=fPre,
                                  solver=NoSolver(dPre),
                                  seed=seed)
            c3 = nengo.Connection(fdfw,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dFdfw),
                                  seed=seed)
            c4 = nengo.Connection(bias,
                                  ens,
                                  synapse=GABA(),
                                  solver=NoSolver(dBias),
                                  seed=seed)
            c5 = nengo.Connection(ens,
                                  ens,
                                  synapse=NMDA(),
                                  solver=NoSolver(dEns),
                                  seed=seed)

    with nengo.Simulator(model, seed=seed, dt=dt, progress_bar=False) as sim:
        if stage == 0:
            pass
        if stage == 1:
            setWeights(c1, dPre, ePreFdfw)
            setWeights(c2, dPre, ePreBias)
        if stage == 2:
            setWeights(c1, dPre, ePreFdfw)
            setWeights(c2, dPre, ePreBias)
        if stage == 3:
            setWeights(c1, dPre, ePreBias)
            setWeights(c2, dBias, eBiasEns)
        if stage == 4:
            setWeights(c1, dPre, ePreBias)
            setWeights(c2, dBias, eBiasEns)
            setWeights(c3, dPre, ePreEns)
        if stage == 5:
            setWeights(c1, dPre, ePreFdfw)
            setWeights(c2, dPre, ePreEns)
            setWeights(c3, dPre, ePreBias)
            setWeights(c4, dFdfw, eFdfwEns)
            setWeights(c5, dBias, eBiasEns)
        if stage == 6:
            setWeights(c1, dPre, ePreFdfw)
            setWeights(c2, dPre, ePreEns)
            setWeights(c3, dPre, ePreBias)
            setWeights(c4, dFdfw, eFdfwEns)
            setWeights(c5, dBias, eBiasEns)
        if stage == 7:
            setWeights(c1, dPre, ePreFdfw)
            setWeights(c2, dPre, ePreEns)
            setWeights(c3, dPre, ePreEns)
            setWeights(c4, dPre, ePreBias)
            setWeights(c5, dFdfw, eFdfwEns)
            setWeights(c6, dFdfw, eFdfwEns)
            setWeights(c7, dBias, eBiasEns)
            setWeights(c8, dBias, eBiasEns)
            setWeights(c9, dBias, eBiasEns)
            setWeights(c10, dEns, eEnsEns)
        if stage == 8:
            setWeights(c1, dPre, ePreFdfw)
            setWeights(c2, dPre, ePreBias)
            setWeights(c3, dFdfw, eFdfwEns)
            setWeights(c4, dBias, eBiasEns)
            setWeights(c5, dEns, eEnsEns)

        neuron.h.init()
        sim.run(t, progress_bar=True)
        reset_neuron(sim, model)

    ePreFdfw = c1.e if stage == 1 else ePreFdfw
    ePreBias = c2.e if stage == 1 else ePreBias
    eBiasEns = c2.e if stage == 3 else eBiasEns
    ePreEns = c3.e if stage == 4 else ePreEns
    eFdfwEns = c4.e if stage == 5 else eFdfwEns
    eEnsEns = c10.e if stage == 7 else eEnsEns

    return dict(
        times=sim.trange(),
        inptA=sim.data[pInptA],
        inptB=sim.data[pInptB],
        inptC=sim.data[pInptC],
        preA=sim.data[pPreA],
        fdfw=sim.data[pFdfw],
        ens=sim.data[pEns],
        bias=sim.data[pBias],
        tarFdfw=sim.data[pTarFdfw],
        tarEns=sim.data[pTarEns],
        tarBias=sim.data[pTarBias],
        ePreFdfw=ePreFdfw,
        ePreEns=ePreEns,
        ePreBias=ePreBias,
        eFdfwEns=eFdfwEns,
        eBiasEns=eBiasEns,
        eEnsEns=eEnsEns,
    )