コード例 #1
0
    def __init__(self, folder):

        self.frames_list = list_paths(folder)
        self.ind = 0
        self.done = False
        self.first = True
        self.sequence_list = []
コード例 #2
0
def detectFromFolder(folder):

	paths = list_paths(folder)
	
	images, locations, new_paths = detectFromPaths(paths)

	return images, locations, new_paths
コード例 #3
0
ファイル: places.py プロジェクト: SoccerStatsUS/metadata
def load_stadiums():
    print("Loading stadiums.")
    p = os.path.join(ROOT_DIR, 'metadata/data/places/stadiums')
    pys = [e for e in list_paths(p) if e.endswith('.py')]
    l = []

    # What is this?
    for py in pys:
        if not py.startswith('_'):
            #tail = py.replace('/home/chris/www/', '').replace('.py', '').replace('/', '.')
            tail = py.replace(ROOT_DIR, '').replace('.py', '').replace('/', '.')
        
            if tail.startswith('.'):
                tail = tail[1:]

            l.extend(import_path(tail).l)
            
    regions = [e for e in os.listdir(p) if '.' not in e]

    final = []

    # Do this in normalize?
    for e in l:
        d = stadium_defaults.copy()
        d.update(e)
        final.append(d)

    return final
コード例 #4
0
async def index(request):
    stages = {}
    global imports
    for (key, module) in imports.items():
        setup = getattr(module, 'setup')
        module_pys = get_import_files(setup['path'])
        stages[key] = list_paths(module_pys)
    return json({'success': True, 'data': stages})
コード例 #5
0
async def stage_index(request, stage_name):
    lessons = {}
    global imports, module_pys
    if stage_name in imports:
        setup = getattr(imports[stage_name], 'setup')
        lessons = list_paths(module_imports[stage_name])
        return json({'success': True, 'data': lessons})
    else:
        return json({'fail': True, 'error': 'No such stage.'})
コード例 #6
0
    def test(self):

        with torch.no_grad():

            self.g_model.eval()
            test_videos = list_paths(c.TEST_DIR)
            psnr_all_videos = []

            for vid in test_videos:  # test videos seperately
                vid_name = vid.split('/')[-1]
                video_loader = Loader(folder=vid)
                psnr_mean = self.process_video(video_loader)
                print('{:15s} - PSNR: {:5.2f}'.format(vid_name, psnr_mean))
                psnr_all_videos.append(psnr_mean)

            psnr_videos_mean = np.mean(psnr_all_videos)
            print('{:15s} - PSNR: {:5.2f}'.format('AVERAGE', psnr_videos_mean))
            print('\nPredicted frames are saved at {}'.format(c.IMG_SAVE_DIR))