コード例 #1
0
def predict(model):
    X, patientIds = loadTestData()
    predictions = model.predict(X).flatten()
    predictions_df = pd.DataFrame({
        'Patient Id': patientIds,
        'Expected': predictions
    }).drop_duplicates('Patient Id')

    return predictions_df
コード例 #2
0
ファイル: OneVsTwoRandom.py プロジェクト: OrZipori/ATML_EX1
def main():
    k = utils.numOfClasses
    columns = int(((k * k) * (k - 1)) / 4)
    ecoc_matrix = np.zeros((k, columns), dtype=float)
    classifiers = []
    trainset = utils.fetchData()
    print("total train set data len: {}".format(str(len(trainset))))
    testset = utils.loadTestData()

    lambda_p = 1
    epoch_number = 15
    pair_index = 0

    # Train All-Pair Classifiers
    for i in range(utils.numOfClasses):
        # add all other classes that are not the positive class
        oppsiteClasses = [c for c in range(utils.numOfClasses) if c != i]
        for y0, y1 in get_all_pairs(oppsiteClasses):
            update_ecoc_matrix(ecoc_matrix, pair_index, i, (y0, y1))
            print("working on {} vs {},{}".format(i, y0, y1))
            pair_index = pair_index + 1
            filtered_data = filter_data(trainset, (i, y0, y1))
            print("relevant data: {}".format(str(len(filtered_data))))
            binary_data = utils.transformToBinaryClasses(filtered_data,
                                                         positiveClass=i)
            model = utils.SVM(utils.inputDim, utils.eta, lambda_p,
                              epoch_number)
            model.train(binary_data)
            classifiers.append(model)
            print("finished with #{} model".format(pair_index))

    # Evaluate Test Data by Hamming Distance
    utils.evaluation(testset,
                     utils.HammingDistance,
                     ecoc_matrix,
                     'test.random2.ham.pred',
                     classifiers,
                     distanceMetric="Hamming")

    # Evaluate Test Data by Loss Base Decoding
    utils.evaluation(testset,
                     utils.lossBaseDecoding,
                     ecoc_matrix,
                     'test.random2.loss.pred',
                     classifiers,
                     distanceMetric="LBD")
コード例 #3
0
def main():
    classifiers = []
    trainset = utils.fetchData()
    devset = utils.loadDevData()
    testset = utils.loadTestData()

    # train OvA classifiers
    for i in range(utils.numOfClasses):
        binData = utils.transformToBinaryClasses(trainset, positiveClass=[i])
        model = utils.SVM(utils.inputDim, utils.eta, 1, 50)
        model.train(binData)
        classifiers.append(model)
        print("finished with #{} model".format(i))

    # Validation - Evaluate Test Data by Hamming Distance
    utils.validate(devset,
                   utils.HammingDistance,
                   ecocMat,
                   'test.onevall.ham.pred',
                   classifiers,
                   distanceMetric="Hamming")

    # Validation - Evaluate Test Data by Loss Base Decoding
    utils.validate(devset,
                   utils.lossBaseDecoding,
                   ecocMat,
                   'test.onevall.ham.pred',
                   classifiers,
                   distanceMetric="LBD")

    # Test - Evaluate test data by Hamming Distance
    utils.evaluate(testset,
                   utils.HammingDistance,
                   ecocMat,
                   'test.onevall.ham.pred',
                   classifiers,
                   distanceMetric="Hamming")

    # Test - Evaluate test data by Loss Base Decoding
    utils.evaluate(testset,
                   utils.lossBaseDecoding,
                   ecocMat,
                   'test.onevall.loss.pred',
                   classifiers,
                   distanceMetric="LBD")
コード例 #4
0
ファイル: AllPairs.py プロジェクト: amitrdt/ATML_one
def main():
    k = utils.numOfClasses
    columns = int(k * (k - 1) / 2)
    ecoc_matrix = np.zeros((k, columns), dtype=int)
    classifiers = []
    trainset = utils.fetchData()
    devset = utils.loadDevData()
    print("total train set data len: {}".format(str(len(trainset))))
    testset = utils.loadTestData()

    lambda_p = 1
    epoch_number = 20
    pair_index = 0

    # Train All-Pair Classifiers
    for y0, y1 in get_all_pairs(utils.numOfClasses):
        update_ecoc_matrix(ecoc_matrix, pair_index, y0, y1)
        print("working on pair {},{}".format(y0, y1))
        pair_index = pair_index + 1
        filtered_data = filter_data(trainset, (y0, y1))
        print("pair relevant data: {}".format(str(len(filtered_data))))
        binary_data = utils.transformToBinaryClasses(filtered_data,
                                                     positiveClass=[y0])
        model = utils.SVM(utils.inputDim, utils.eta, lambda_p, epoch_number)
        model.train(binary_data)
        classifiers.append(model)
        print("finished with #{} model".format(pair_index))

    print(ecoc_matrix)

    # Evaluate Test Data by Hamming Distance
    utils.validate(devset,
                   utils.HammingDistance,
                   ecoc_matrix,
                   'test.allpairs.ham.pred',
                   classifiers,
                   distanceMetric="Hamming")

    # Evaluate Test Data by Loss Base Decoding
    utils.validate(devset,
                   utils.lossBaseDecoding,
                   ecoc_matrix,
                   'test.allpairs.loss.pred',
                   classifiers,
                   distanceMetric="LBD")

    # Evaluate Test Data by Hamming Distance
    utils.evaluate(testset,
                   utils.HammingDistance,
                   ecoc_matrix,
                   'test.allpairs.ham.pred',
                   classifiers,
                   distanceMetric="Hamming")

    # Evaluate Test Data by Loss Base Decoding
    utils.evaluate(testset,
                   utils.lossBaseDecoding,
                   ecoc_matrix,
                   'test.allpairs.loss.pred',
                   classifiers,
                   distanceMetric="LBD")
コード例 #5
0
def main():
    train_data = loadTrainData(train_file)
    test_data = loadTestData(test_file)
    RNNTrain(train_data)
コード例 #6
0
def main():
    rows = utils.numOfClasses
    columns = random.randint(4, 8)
    ecoc_matrix = create_ecoc_matrix(rows, columns)
    classifiers = []
    trainset = utils.fetchData()
    print("total train set data len: {}".format(str(len(trainset))))
    devset = utils.loadDevData()
    testset = utils.loadTestData()

    lambda_p = 1
    epoch_number = 20
    print(ecoc_matrix)

    print(len(devset), len(testset))

    for j in range(columns):
        positive = []
        negetive = []
        for i in range(rows):
            if ecoc_matrix[i][j] == 1:
                positive.append(i)
            elif ecoc_matrix[i][j] == -1:
                negetive.append(i)

        print(j, " positive: ", positive, "negetive:", negetive)
        filtered_data = filter_data(trainset, negetive + positive)
        print("filtered data", len(filtered_data))
        # need to change this function to support list
        binary_data = utils.transformToBinaryClasses(filtered_data,
                                                     positiveClass=positive)
        model = utils.SVM(utils.inputDim, utils.eta, lambda_p, epoch_number)
        model.train(binary_data)
        classifiers.append(model)

    # Validation - Evaluate Test Data by Hamming Distance
    utils.validate(devset,
                   utils.HammingDistance,
                   ecoc_matrix,
                   'test.random.ham.pred',
                   classifiers,
                   distanceMetric="Hamming")

    # Validation - Evaluate Test Data by Loss Base Decoding
    utils.validate(devset,
                   utils.lossBaseDecoding,
                   ecoc_matrix,
                   'test.random.loss.pred',
                   classifiers,
                   distanceMetric="LBD")

    # Test - Evaluate Test Data by Hamming Distance
    utils.evaluate(testset,
                   utils.HammingDistance,
                   ecoc_matrix,
                   'test.random.ham.pred',
                   classifiers,
                   distanceMetric="Hamming")

    # Test - Evaluate Test Data by Loss Base Decoding
    utils.evaluate(testset,
                   utils.lossBaseDecoding,
                   ecoc_matrix,
                   'test.random.loss.pred',
                   classifiers,
                   distanceMetric="LBD")