コード例 #1
0
def main(args):
    path = C.PATH
    # model = PureCapsNet(input_shape=C.INPUT_SHAPE, n_class=C.OUTPUT_CLASS, routings=C.ROUTINGS)
    model = TestMixCapsNet(input_shape=C.INPUT_SHAPE, n_class=C.OUTPUT_CLASS, routings=C.ROUTINGS)
    # model = MultiScaleCapsNet(input_shape=C.INPUT_SHAPE, n_class=C.OUTPUT_CLASS, routings=C.ROUTINGS)
    model.summary()
    # exit()

    if args.target == 'train' or args.target == 'retrain':
        checkpoint = callbacks.ModelCheckpoint(f'check_point/{model.name}_best.h5', monitor='val_loss',
                                               save_best_only=True, verbose=1)
        reduce = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, mode='min')
        earlystopping = callbacks.EarlyStopping(monitor='val_loss', patience=20)
        log = callbacks.CSVLogger('logs/log.csv')
        tb = callbacks.TensorBoard('logs/tensorboard-logs', batch_size=C.BATCH_SIZE, histogram_freq=0)
        lr_decay = callbacks.LearningRateScheduler(schedule=lambda epoch: C.LR * (C.LR_DECAY ** epoch))

        if args.target == 'retrain':
            # sgd with lr=0.01 for fine-tune
            optimizer = optimizers.sgd(lr=0.01, momentum=0.9, nesterov=True, decay=1e-6)
            model.load_weights(f'check_point/{model.name}_best.h5', by_name=True)
            print(f"{model.name} loaded.")
        else:
            optimizer = optimizers.Adam(lr=C.LR)
            print("No model loaded.")

        model.compile(optimizer=optimizer,
                      # loss=[margin_loss],
                      loss='binary_crossentropy',
                      # loss_weights=[1.],
                      metrics=[categorical_accuracy])
        # metrics={'capsnet': 'accuracy'})
        model.fit_generator(data_generator('/'.join((path, 'train'))), epochs=120,
                            steps_per_epoch=C.TRAIN_SIZE // C.BATCH_SIZE,
                            validation_data=data_generator('/'.join((path, 'val'))),
                            validation_steps=C.VAL_SIZE // C.BATCH_SIZE, verbose=1,
                            callbacks=[checkpoint, log, tb, earlystopping])
        # callbacks=[checkpoint])
        model.save(f'check_point/{model.name}_final.h5')
    else:
        # model.load_weights(f'check_point/{model.name}_best.h5')
        model.load_weights(f'check_point/{model.name}_0.904204.h5')

        print("Loading test data ...")
        x_test, y_test = load_all_data('/'.join((path, 'test')))
        y_pred = batch_prediction(model, x_test, batch_size=200)

        print(len(y_test), len(y_pred), len(y_test))
        model_evaluate(y_pred, y_test)
コード例 #2
0
ファイル: attribution.py プロジェクト: dmcbffeng/ChromCAESAR
def attribution(coordinate, model, cell_type='mESC', verbose=1):
    """Calculate the attributions and output a series of bigBed files

    Args:
        coordinate (str): e.g., chr1:153500000-153501000,chr1:153540000-153542000
        model (keras.models.Model): a loaded model
        cell_type (str): cell type
        verbose (int): whether to print

    Return:
        No return. Output to output_bigBed/.
    """
    if verbose:
        print(' Identify the chosen region...')
    # Step 1: process the coordinate and check whether it's illegal
    position = parse_coordinate(coordinate)
    print(position)

    # Step 2: find the corresponding 200-kb region, return the start coordinate
    [ch, start_pos, p11, p12, p21, p22] = find_1kb_region(position)
    print(ch, start_pos, p11, p12, p21, p22)

    if verbose:
        print(' Loading data for calculation...')
    # Step 3: Load data for the chosen region
    hic, epi = load_all_data(ch, start_pos, signals)

    if verbose:
        print(' Calculating attributions...')
    # Step 4: Calculate attributions
    attributions = int_grad(model, hic, epi, [p11, p12, p21, p22], steps=100)
    # return a 1000 * 11 numpy array
    # np.save(f'att_chr7_22975000.npy', attributions)

    if verbose:
        print(' Saving outputs...')
    # Step 5: Save them into bed file and convert into bigBed file
    save_bigBed(attributions, signals, ch, start_pos)
コード例 #3
0
ファイル: rf.py プロジェクト: haswelliris/taxi
def run():
    ###### load data ###############
    print('1. load all data.........')
    train_fold_x, train_fold_y, val_fold_x, val_fold_y, test_x = load_all_data(
    )

    print('2. build rf model..........')
    rf = RandomForestRegressor(n_estimators=2500,
                               min_samples_split=3,
                               max_depth=16,
                               n_jobs=-1)

    print('3. start 10fold cv ..........')
    total_fold_error = 0
    for fold_idx in range(N_FOLDS):
        print(str(fold_idx) + ' cv running..........')
        sub_tr_fold_x = train_fold_x[fold_idx]
        sub_tr_fold_y = train_fold_y[fold_idx]
        sub_val_fold_x = val_fold_x[fold_idx]
        sub_val_fold_y = val_fold_y[fold_idx]

        rf.fit(sub_tr_fold_x, sub_tr_fold_y)

        Model_Name = 'rf_' + str(fold_idx)
        ###### save model ########
        joblib.dump(rf, 'weights/' + Model_Name + '.m')
        sub_pred_val = rf.predict(sub_val_fold_x)
        total_fold_error += gen_report(sub_val_fold_y, sub_pred_val,
                                       'log/report.log', fold_idx)

        pred_te = rf.predict(test_x)
        result_csv_path = 'result/rf_' + str(fold_idx) + '.csv'
        save_results(result_csv_path, pred_te)
    mean_fold_error = total_fold_error / (N_FOLDS * 1.0)
    f_report = open('log/report.log', 'a')
    f_report.write('Mean Fold Error:\t' + str(mean_fold_error))
    f_report.close()
コード例 #4
0
 def _init(self):
     province, city, sub_city = load_all_data()
     self.province_search = PrefixQuery(province)
     self.city_search = PrefixQuery(city)
     self.sub_city_search = PrefixQuery(sub_city)
コード例 #5
0
ファイル: seed_gen.py プロジェクト: ehsankazemi/MPROPER
import numpy as np
import copy
from collections import defaultdict
import json
import pickle
import utils
name = 'EAL5'
gos = pickle.load(open("GO" + name + ".dat", "rb"))
k_tmp = '5'
filename = 'test.txt'
min_blast = 100
k = 5
sps = ['ce', 'dm', 'hs', 'mm', 'sc']
lr, rl, pairs_dict = utils.load_all_data(min_blast, sps)
letters = sps
filename = 'test.txt'
k = int(k)
annotated = 0
correct = 0
c_clustres = np.zeros(int(k) + 1)
nb_c = 0
seeds = utils.seed_gen(int(k), filename, pairs_dict, letters)

exit()
for seed in seeds:
    nodes = []
    for i in range(k):
        if seed[i] != '-1':
            nodes.append(letters[i] + seed[i])
    cnt = 0
    for node in nodes:
コード例 #6
0
from utils import load_all_data, resample_dataframe

data = load_all_data()
print(data)

by_day = resample_dataframe(data, 'D')
print(by_day)

#sorted = by_day.sort_values('Grid.P')
#print(sorted)

top = by_day.nsmallest(10, 'Grid.P')
print(top)

コード例 #7
0
def main(args):
    path = C.PATH

    model, eval_model, manipulate_model = CapsNet(input_shape=C.INPUT_SHAPE,
                                                  n_class=C.OUTPUT_CLASS,
                                                  routings=C.ROUTINGS)
    model.summary()

    if args.target == 'train':
        model.compile(optimizer=optimizers.Adam(lr=C.LR),
                      loss=[margin_loss, 'mse'],
                      loss_weights=[1., C.LAM_RECON],
                      metrics={'capsnet': 'accuracy'})

        model.fit_generator(
            data_generator('/'.join((path, 'train')), target='train'),
            epochs=50,
            steps_per_epoch=C.TRAIN_SIZE // C.BATCH_SIZE,
            validation_data=data_generator('/'.join((path, 'val')),
                                           target='val'),
            validation_steps=C.VAL_SIZE // C.BATCH_SIZE,
            verbose=1,
            callbacks=[
                ModelCheckpoint(f'check_point/{model.name}_best.h5',
                                monitor='val_capsnet_acc',
                                save_best_only=True,
                                save_weights_only=True,
                                verbose=1),
                ReduceLROnPlateau(monitor='val_loss',
                                  factor=0.1,
                                  patience=10,
                                  mode='min'),
                EarlyStopping(monitor='val_loss', patience=20),
                LearningRateScheduler(
                    schedule=lambda epoch: C.LR * (C.LR_DECAY**epoch))
            ])
        model.save_weights(f'check_point/{model.name}_final.h5')
    else:
        # manipulate_latent(manipulate_model, (x_test, y_test), args)
        # test(model=eval_model, data=(x_test, y_test), args=args)

        # eval_model.load_weights(f'check_point/{train_model.name}_best.h5')
        eval_model.load_weights(f'check_point/model_1_best.h5')

        x_test, y_test = load_all_data('/'.join((path, 'test')), target='test')

        index = 0
        batch_size = 200
        print("length of y_test:", len(y_test))

        test_input = x_test[index:index + batch_size]
        y_pred = eval_model.predict(test_input)[0]
        index += batch_size

        while index < len(y_test) - batch_size:
            test_input = x_test[index:index + batch_size]
            temp = eval_model.predict(test_input)[0]
            y_pred = np.vstack((y_pred, temp))
            index += batch_size

            percent = index / len(y_test)
            progress(percent, width=30)

        test_input = x_test[index:]
        temp = eval_model.predict(test_input)[0]
        y_pred = np.vstack((y_pred, temp))

        # print(y_test.shape, y_pred.shape)

        # print("START COMPUTING...")
        rocauc = metrics.roc_auc_score(y_test, y_pred)
        prauc = metrics.average_precision_score(y_test,
                                                y_pred,
                                                average='macro')
        y_pred = (y_pred > 0.5).astype(np.float32)
        acc = metrics.accuracy_score(y_test, y_pred)
        f1 = metrics.f1_score(y_test, y_pred, average='samples')

        print(
            f'Test scores: rocauc={rocauc:.6f}\tprauc={prauc:.6f}\tacc={acc:.6f}\tf1={f1:.6f}'
        )
コード例 #8
0
    print(err)
    print(command_text)
    sys.exit(2)

datafile = None
date = None
for opt, arg in opts:
    if opt == '-h':
        print(command_text)
        sys.exit()
    elif opt in ("-f", "--file"):
        datafile = arg
    elif opt in ("-d", "--date"):
        date = arg

df = load_file(datafile) if datafile else load_all_data()
if hasattr(df.index, 'floor') and date:
    df = df[df.index.floor('D') == date]

dataset_stats(df)

if 'simulation.Grid.P' in df:
    df["ACLoad.P"].plot(label="Load")
    df["simulation.PV.P"].plot(label="PV")
    # data["PV.P"].plot()
    # data['Grid.P'].plot()
    # data['simulation.Battery.P'].plot(label="Battery")
    df['simulation.Battery.SoC'].plot(label="SoC", secondary_y=True)
    df['simulation.Grid.P'].plot(label="Grid")
    ax = df['simulation.Spill.P'].plot(label="Spill")
    plt.legend()
コード例 #9
0
"""
author: lixh
mission: text similarity
date: train
model: ESIM
"""

from utils import load_all_data, evaluationMetrics
from model import ESIM, arrayToTensor
import tensorflow as tf
from args import args
import numpy as np

# 获取已经处理好的文本数据,共有10万条文本,
# 最大文本长度为20,<list>p_train.shape = [data_size, max_len],返回的是包含字索引的文本数据
p_train, h_trian, y_trian = load_all_data(args.train_path, data_size=3200)
p_train, h_train = np.array(p_train), np.array(h_trian)

p_eval, h_eval, y_eval = load_all_data(args.dev_path, data_size=100)
p_eval, h_eval = np.array(p_eval), np.array(h_eval)

# primise,hypothesis,label三类数据转化为tensor
# train_prem = arrayToTensor(p_train)
# train_hypo = arrayToTensor(h_trian)
# eval_prem = arrayToTensor(p_eval)
# eval_hypo = arrayToTensor(p_eval)

# 生成数据集
train_dataset = tf.data.Dataset.from_tensor_slices((p_train, h_trian, y_trian))
eval_dataset = tf.data.Dataset.from_tensor_slices((p_eval, h_eval, y_eval))