コード例 #1
0
def main():
    # Parse the commandline
    parser = argparse.ArgumentParser(description='Process a dataset for SSD')
    parser.add_argument('--data-source',
                        default='pascal_voc',
                        help='data source')
    parser.add_argument('--data-dir',
                        default='pascal-voc',
                        help='data directory')
    parser.add_argument('--expand-probability',
                        type=float,
                        default=0.5,
                        help='probability of running sample expander')
    parser.add_argument('--sampler-trials',
                        type=int,
                        default=50,
                        help='number of time a sampler tries to find a sample')
    parser.add_argument('--preset',
                        default='vgg300',
                        choices=['vgg300', 'vgg512'])
    args = parser.parse_args()

    print('[i] Data source:          ', args.data_source)
    print('[i] Data directory:       ', args.data_dir)
    print('[i] Expand probability:   ', args.expand_probability)
    print('[i] Sampler trials:       ', args.sampler_trials)
    print('[i] Preset:               ', args.preset)

    # Load the data source
    print('[i] Configuring the data source...')
    try:
        source = load_data_source(args.data_source)
        source.load_trainval_data(args.data_dir)
        print('[i] # training samples:   ', source.num_train)
        print('[i] # validation samples: ', source.num_valid)
        print('[i] # classes:            ', source.num_classes)
    except (ImportError, AttributeError, RuntimeError) as e:
        print('[!] Unable to load data source:', str(e))
        return 1

    # Compute the training data
    preset = get_preset_by_name(args.preset)
    with open(args.data_dir + '/train-samples.pkl', 'wb') as f:
        pickle.dump(source.train_samples, f)
    with open(args.data_dir + '/valid-samples.pkl', 'wb') as f:
        pickle.dump(source.valid_samples, f)

    with open(args.data_dir + '/training-data.pkl', 'wb') as f:
        data = {
            'preset':
            preset,
            'num-classes':
            source.num_classes,
            'colors':
            source.colors,
            'lid2name':
            source.lid2name,
            'lname2id':
            source.lname2id,
            'train-transforms':
            build_train_transforms(preset, source.num_classes,
                                   args.sampler_trials,
                                   args.expand_probability),
            'valid-transforms':
            build_valid_transforms(preset, source.num_classes)
        }
        pickle.dump(data, f)

    return 0
コード例 #2
0
def main():
    #---------------------------------------------------------------------------
    # Parse the commandline
    #---------------------------------------------------------------------------
    parser = argparse.ArgumentParser(description='Process a dataset for SSD')
    parser.add_argument('--data-source', default='brats18', help='data source')
    parser.add_argument('--data-dir',
                        default='/data/tng016/brats18',
                        help='data directory')
    parser.add_argument('--validation-fraction',
                        type=float,
                        default=0.025,
                        help='fraction of the data to be used for validation')
    parser.add_argument('--expand-probability',
                        type=float,
                        default=0.5,
                        help='probability of running sample expander')
    parser.add_argument('--sampler-trials',
                        type=int,
                        default=50,
                        help='number of time a sampler tries to find a sample')
    parser.add_argument('--annotate',
                        type=str2bool,
                        default='False',
                        help="Annotate the data samples")
    parser.add_argument('--compute-td',
                        type=str2bool,
                        default='True',
                        help="Compute training data")
    parser.add_argument('--preset',
                        default='vgg300',
                        choices=['vgg300', 'vgg512'],
                        help="The neural network preset")
    parser.add_argument('--process-test',
                        type=str2bool,
                        default='False',
                        help="process the test dataset")
    args = parser.parse_args()

    print('[i] Data source:          ', args.data_source)
    print('[i] Data directory:       ', args.data_dir)
    print('[i] Validation fraction:  ', args.validation_fraction)
    print('[i] Expand probability:   ', args.expand_probability)
    print('[i] Sampler trials:       ', args.sampler_trials)
    print('[i] Annotate:             ', args.annotate)
    print('[i] Compute training data:', args.compute_td)
    print('[i] Preset:               ', args.preset)
    print('[i] Process test dataset: ', args.process_test)

    #---------------------------------------------------------------------------
    # Load the data source
    #---------------------------------------------------------------------------
    print('[i] Configuring the data source...')
    #try:
    source = load_data_source(args.data_source)
    source.load_trainval_data(args.data_dir, args.validation_fraction)
    if args.process_test:
        source.load_test_data(args.data_dir)
    print('[i] # training samples:   ', source.num_train)
    print('[i] # validation samples: ', source.num_valid)
    print('[i] # testing samples:    ', source.num_test)
    print('[i] # classes:            ', source.num_classes)
    #except (ImportError, AttributeError, RuntimeError) as e:
    # print('[!] Unable to load data source:', str(e))
    # return 1

    #---------------------------------------------------------------------------
    # Annotate samples
    #---------------------------------------------------------------------------
    if args.annotate:
        print('[i] Annotating samples...')
        annotate(args.data_dir, source.train_samples, source.colors, 'train')
        annotate(args.data_dir, source.valid_samples, source.colors, 'valid')
        if args.process_test:
            annotate(args.data_dir, source.test_samples, source.colors,
                     'test ')

    #---------------------------------------------------------------------------
    # Compute the training data
    #---------------------------------------------------------------------------
    if args.compute_td:
        preset = get_preset_by_name(args.preset)
        with open(args.data_dir + '/train-samples.pkl', 'wb') as f:
            pickle.dump(source.train_samples, f)
        with open(args.data_dir + '/valid-samples.pkl', 'wb') as f:
            pickle.dump(source.valid_samples, f)

        with open(args.data_dir + '/training-data.pkl', 'wb') as f:
            data = {
                'preset':
                preset,
                'num-classes':
                source.num_classes,
                'colors':
                source.colors,
                'lid2name':
                source.lid2name,
                'lname2id':
                source.lname2id,
                'train-transforms':
                build_train_transforms(preset, source.num_classes,
                                       args.sampler_trials,
                                       args.expand_probability),
                'valid-transforms':
                build_valid_transforms(preset, source.num_classes)
            }
            pickle.dump(data, f)

    return 0
コード例 #3
0
def main():
    #---------------------------------------------------------------------------
    # Parse commandline
    #---------------------------------------------------------------------------
    parser = argparse.ArgumentParser(description='SSD inference')
    parser.add_argument("files", nargs="*")
    parser.add_argument('--name', default='test', help='project name')
    parser.add_argument('--checkpoint',
                        type=int,
                        default=-1,
                        help='checkpoint to restore; -1 is the most recent')
    parser.add_argument('--training-data',
                        default='pascal-voc/training-data.pkl',
                        help='Information about parameters used for training')
    parser.add_argument('--output-dir',
                        default='test-output',
                        help='directory for the resulting images')
    parser.add_argument('--annotate',
                        type=str2bool,
                        default='False',
                        help="Annotate the data samples")
    parser.add_argument('--dump-predictions',
                        type=str2bool,
                        default='False',
                        help="Dump raw predictions")
    parser.add_argument('--compute-stats',
                        type=str2bool,
                        default='True',
                        help="Compute the mAP stats")
    parser.add_argument('--data-source',
                        default=None,
                        help='Use test files from the data source')
    parser.add_argument('--data-dir',
                        default='pascal-voc',
                        help='Use test files from the data source')
    parser.add_argument('--batch-size',
                        type=int,
                        default=32,
                        help='batch size')
    parser.add_argument('--sample',
                        default='test',
                        choices=['test', 'trainval'],
                        help='sample to run on')
    parser.add_argument('--threshold',
                        type=float,
                        default=0.5,
                        help='confidence threshold')
    parser.add_argument('--pascal-summary',
                        type=str2bool,
                        default='False',
                        help='dump the detections in Pascal VOC format')

    args = parser.parse_args()

    #---------------------------------------------------------------------------
    # Print parameters
    #---------------------------------------------------------------------------
    print('[i] Project name:      ', args.name)
    print('[i] Training data:     ', args.training_data)
    print('[i] Batch size:        ', args.batch_size)
    print('[i] Data source:       ', args.data_source)
    print('[i] Data directory:    ', args.data_dir)
    print('[i] Output directory:  ', args.output_dir)
    print('[i] Annotate:          ', args.annotate)
    print('[i] Dump predictions:  ', args.dump_predictions)
    print('[i] Sample:            ', args.sample)
    print('[i] Threshold:         ', args.threshold)
    print('[i] Pascal summary:    ', args.pascal_summary)

    #---------------------------------------------------------------------------
    # Check if we can get the checkpoint
    #---------------------------------------------------------------------------
    state = tf.train.get_checkpoint_state(args.name)
    if state is None:
        print('[!] No network state found in ' + args.name)
        return 1

    try:
        checkpoint_file = state.all_model_checkpoint_paths[args.checkpoint]
    except IndexError:
        print('[!] Cannot find checkpoint ' + str(args.checkpoint_file))
        return 1

    metagraph_file = checkpoint_file + '.meta'

    if not os.path.exists(metagraph_file):
        print('[!] Cannot find metagraph ' + metagraph_file)
        return 1

    #---------------------------------------------------------------------------
    # Load the training data
    #---------------------------------------------------------------------------
    try:
        with open(args.training_data, 'rb') as f:
            data = pickle.load(f)
        preset = data['preset']
        colors = data['colors']
        lid2name = data['lid2name']
        num_classes = data['num-classes']
        image_size = preset.image_size
        anchors = get_anchors_for_preset(preset)
    except (FileNotFoundError, IOError, KeyError) as e:
        print('[!] Unable to load training data:', str(e))
        return 1

    #---------------------------------------------------------------------------
    # Load the data source if defined
    #---------------------------------------------------------------------------
    compute_stats = False
    source = None
    if args.data_source:
        print('[i] Configuring the data source...')
        try:
            source = load_data_source(args.data_source)
            if args.sample == 'test':
                source.load_test_data(args.data_dir)
                num_samples = source.num_test
                samples = source.test_samples
            else:
                source.load_trainval_data(args.data_dir, 0)
                num_samples = source.num_train
                samples = source.train_samples
            print('[i] # samples:         ', num_samples)
            print('[i] # classes:         ', source.num_classes)
        except (ImportError, AttributeError, RuntimeError) as e:
            print('[!] Unable to load data source:', str(e))
            return 1

        if args.compute_stats:
            compute_stats = True

    #---------------------------------------------------------------------------
    # Create a list of files to analyse and make sure that the output directory
    # exists
    #---------------------------------------------------------------------------
    files = []

    if source:
        for sample in samples:
            files.append(sample.filename)

    if not source:
        if args.files:
            files = args.files

        if not files:
            print('[!] No files specified')
            return 1

    files = list(filter(lambda x: os.path.exists(x), files))
    if files:
        if not os.path.exists(args.output_dir):
            os.makedirs(args.output_dir)

    #---------------------------------------------------------------------------
    # Print model and dataset stats
    #---------------------------------------------------------------------------
    print('[i] Compute stats:     ', compute_stats)
    print('[i] Network checkpoint:', checkpoint_file)
    print('[i] Metagraph file:    ', metagraph_file)
    print('[i] Image size:        ', image_size)
    print('[i] Number of files:   ', len(files))

    #---------------------------------------------------------------------------
    # Create the network
    #---------------------------------------------------------------------------
    if compute_stats:
        ap_calc = APCalculator()

    if args.pascal_summary:
        pascal_summary = PascalSummary()

    with tf.Session() as sess:
        print('[i] Creating the model...')
        net = SSDVGG(sess, preset)
        net.build_from_metagraph(metagraph_file, checkpoint_file)

        #-----------------------------------------------------------------------
        # Process the images
        #-----------------------------------------------------------------------
        generator = sample_generator(files, image_size, args.batch_size)
        n_sample_batches = int(math.ceil(len(files) / args.batch_size))
        description = '[i] Processing samples'

        for x, idxs in tqdm(generator,
                            total=n_sample_batches,
                            desc=description,
                            unit='batches'):
            feed = {net.image_input: x, net.keep_prob: 1}
            enc_boxes = sess.run(net.result, feed_dict=feed)

            #-------------------------------------------------------------------
            # Process the predictions
            #-------------------------------------------------------------------
            for i in range(enc_boxes.shape[0]):
                boxes = decode_boxes(enc_boxes[i], anchors, args.threshold,
                                     lid2name, None)
                boxes = suppress_overlaps(boxes)[:200]
                filename = files[idxs[i]]
                basename = os.path.basename(filename)

                #---------------------------------------------------------------
                # Annotate samples
                #---------------------------------------------------------------
                if args.annotate:
                    img = cv2.imread(filename)
                    for box in boxes:
                        draw_box(img, box[1], colors[box[1].label])
                    fn = args.output_dir + '/' + basename
                    cv2.imwrite(fn, img)

                #---------------------------------------------------------------
                # Dump the predictions
                #---------------------------------------------------------------
                if args.dump_predictions:
                    raw_fn = args.output_dir + '/' + basename + '.npy'
                    np.save(raw_fn, enc_boxes[i])

                #---------------------------------------------------------------
                # Add predictions to the stats calculator and to the Pascal
                # summary
                #---------------------------------------------------------------
                if compute_stats:
                    ap_calc.add_detections(samples[idxs[i]].boxes, boxes)

                if args.pascal_summary:
                    pascal_summary.add_detections(filename, boxes)

    #---------------------------------------------------------------------------
    # Compute and print the stats
    #---------------------------------------------------------------------------
    if compute_stats:
        aps = ap_calc.compute_aps()
        for k, v in aps.items():
            print('[i] AP [{0}]: {1:.3f}'.format(k, v))
        print('[i] mAP: {0:.3f}'.format(APs2mAP(aps)))

    #---------------------------------------------------------------------------
    # Write the pascal summary files
    #---------------------------------------------------------------------------
    if args.pascal_summary:
        pascal_summary.write_summary(args.output_dir)

    print('[i] All done.')
    return 0