def plot_glove_upto(): for i in [500]: glove_data = utils.load_glove_data('train') glove_q = utils.load_glove_data('query')[:300] utils.plot_dist_hist_upto(glove_data, glove_q, i, 'glove') for i in [500]: glove_c_data = utils.load_glove_c_data('train') glove_c_q = utils.load_glove_c_data('query')[:300] utils.plot_dist_hist_upto(glove_c_data, glove_c_q, i, 'glove_c')
def plot_glove(): #glove_data = utils.load_sift_data('query') #pdb.set_trace() for i in [1, 100]: glove_data = utils.load_glove_data('train') glove_q = utils.load_glove_data('query')[:600] _, plt = utils.plot_dist_hist(glove_data, glove_q, i, 'glove') plt.clf() for i in [1, 100]: glove_c_data = utils.load_glove_c_data('train') glove_c_q = utils.load_glove_c_data('query')[:600] utils.plot_dist_hist(glove_c_data, glove_c_q, i, 'glove_c2')
Demo for running training or linear models. ''' import utils from kahip.kmkahip import run_kmkahip if __name__ == '__main__': opt = utils.parse_args() #adjust the number of parts and the height of the hierarchy n_cluster_l = [2] height_l = [1] # load dataset if opt.glove: dataset = utils.load_glove_data('train').to(utils.device) queryset = utils.load_glove_data('query').to(utils.device) neighbors = utils.load_glove_data('answers').to(utils.device) elif opt.sift: dataset = utils.load_sift_data('train').to(utils.device) queryset = utils.load_sift_data('query').to(utils.device) neighbors = utils.load_sift_data('answers').to(utils.device) else: dataset = utils.load_data('train').to(utils.device) queryset = utils.load_data('query').to(utils.device) neighbors = utils.load_data('answers').to(utils.device) #specify which action to take at each level, actions can be km, kahip, train, or svm. Lower keys indicate closer to leaf. #Note that if 'kahip' is included, evaluation must be on training rather than test set, since partitioning was performed on training, but not test, set. #e.g.: opt.level2action = {0:'km', 1:'train', 3:'train'} opt.level2action = {0: 'train'}
def compute_alpha_beta(): #dataset = utils.load_sift_data('train').to(utils.device) dataset = utils.load_glove_data('train').to(utils.device) alpha, beta = utils.compute_alpha_beta(dataset, 10) print(alpha, beta) pdb.set_trace()