コード例 #1
0
ファイル: main.py プロジェクト: dlshu/RS-GAN-v1
def main():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    parent_parser = argparse.ArgumentParser(
        description='Training of HiDDeN nets')
    subparsers = parent_parser.add_subparsers(dest='command',
                                              help='Sub-parser for commands')
    new_run_parser = subparsers.add_parser('new', help='starts a new run')
    new_run_parser.add_argument('--data-dir',
                                '-d',
                                required=True,
                                type=str,
                                help='The directory where the data is stored.')
    # Anno dir
    new_run_parser.add_argument(
        '--anno-dir',
        '-a',
        type=str,
        help=
        'The directory where the annotations are stored. Specify only if you have annotations in a different folder.'
    )

    new_run_parser.add_argument('--batch-size',
                                '-b',
                                required=True,
                                type=int,
                                help='The batch size.')
    new_run_parser.add_argument('--epochs',
                                '-e',
                                default=300,
                                type=int,
                                help='Number of epochs to run the simulation.')
    new_run_parser.add_argument('--name',
                                required=True,
                                type=str,
                                help='The name of the experiment.')

    new_run_parser.add_argument(
        '--size',
        '-s',
        default=128,
        type=int,
        help=
        'The size of the images (images are square so this is height and width).'
    )
    new_run_parser.add_argument('--message',
                                '-m',
                                default=256,
                                type=int,
                                help='The length in bits of the watermark.')
    new_run_parser.add_argument(
        '--continue-from-folder',
        '-c',
        default='',
        type=str,
        help=
        'The folder from where to continue a previous run. Leave blank if you are starting a new experiment.'
    )
    # parser.add_argument('--tensorboard', dest='tensorboard', action='store_true',
    #                     help='If specified, use adds a Tensorboard log. On by default')
    new_run_parser.add_argument('--tensorboard',
                                action='store_true',
                                help='Use to switch on Tensorboard logging.')
    new_run_parser.add_argument('--enable-fp16',
                                dest='enable_fp16',
                                action='store_true',
                                help='Enable mixed-precision training.')

    new_run_parser.add_argument(
        '--noise',
        nargs='*',
        action=NoiseArgParser,
        help=
        "Noise layers configuration. Use quotes when specifying configuration, e.g. 'cropout((0.55, 0.6), (0.55, 0.6))'"
    )

    new_run_parser.set_defaults(tensorboard=False)
    new_run_parser.set_defaults(enable_fp16=False)
    new_run_parser.add_argument('--vocab-path',
                                '-v',
                                type=str,
                                default='./data/vocab.pkl',
                                help='load the vocab')

    continue_parser = subparsers.add_parser('continue',
                                            help='Continue a previous run')
    continue_parser.add_argument(
        '--folder',
        '-f',
        required=True,
        type=str,
        help='Continue from the last checkpoint in this folder.')
    continue_parser.add_argument(
        '--data-dir',
        '-d',
        required=False,
        type=str,
        help=
        'The directory where the data is stored. Specify a value only if you want to override the previous value.'
    )
    # Anno dir
    continue_parser.add_argument(
        '--anno-dir',
        '-a',
        required=False,
        type=str,
        help=
        'The directory where the annotations are stored. Specify a value only if you want to override the previous value.'
    )
    continue_parser.add_argument(
        '--epochs',
        '-e',
        required=False,
        type=int,
        help=
        'Number of epochs to run the simulation. Specify a value only if you want to override the previous value.'
    )

    args = parent_parser.parse_args()
    checkpoint = None
    loaded_checkpoint_file_name = None

    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    if args.command == 'continue':
        this_run_folder = args.folder
        options_file = os.path.join(this_run_folder,
                                    'options-and-config.pickle')
        train_options, hidden_config, noise_config = utils.load_options(
            options_file)
        checkpoint, loaded_checkpoint_file_name = utils.load_last_checkpoint(
            os.path.join(this_run_folder, 'checkpoints'))
        train_options.start_epoch = checkpoint['epoch'] + 1
        if args.data_dir is not None:
            train_options.train_folder = os.path.join(args.data_dir, 'train')
            train_options.validation_folder = os.path.join(
                args.data_dir, 'val')
        if args.epochs is not None:
            if train_options.start_epoch < args.epochs:
                train_options.number_of_epochs = args.epochs
            else:
                print(
                    f'Command-line specifies of number of epochs = {args.epochs}, but folder={args.folder} '
                    f'already contains checkpoint for epoch = {train_options.start_epoch}.'
                )
                exit(1)

    else:
        assert args.command == 'new'
        start_epoch = 1

        train_options = TrainingOptions(
            batch_size=args.batch_size,
            number_of_epochs=args.epochs,
            train_folder=os.path.join(args.data_dir, 'train'),
            validation_folder=os.path.join(args.data_dir, 'val'),
            ann_train=os.path.join(args.data_dir, 'ann_train.json'),
            ann_val=os.path.join(args.data_dir, 'ann_val.json'),
            runs_folder=os.path.join('.', 'runs'),
            start_epoch=start_epoch,
            experiment_name=args.name)

        noise_config = args.noise if args.noise is not None else []
        hidden_config = HiDDenConfiguration(H=args.size,
                                            W=args.size,
                                            message_length=args.message,
                                            encoder_blocks=4,
                                            encoder_channels=64,
                                            decoder_blocks=7,
                                            decoder_channels=64,
                                            use_discriminator=True,
                                            use_vgg=False,
                                            discriminator_blocks=3,
                                            discriminator_channels=64,
                                            decoder_loss=1,
                                            encoder_loss=0.7,
                                            adversarial_loss=1e-3,
                                            vocab_size=len(vocab),
                                            enable_fp16=args.enable_fp16)

        this_run_folder = utils.create_folder_for_run(
            train_options.runs_folder, args.name)
        with open(os.path.join(this_run_folder, 'options-and-config.pickle'),
                  'wb+') as f:
            pickle.dump(train_options, f)
            pickle.dump(noise_config, f)
            pickle.dump(hidden_config, f)

    logging.basicConfig(level=logging.INFO,
                        format='%(message)s',
                        handlers=[
                            logging.FileHandler(
                                os.path.join(
                                    this_run_folder,
                                    f'{train_options.experiment_name}.log')),
                            logging.StreamHandler(sys.stdout)
                        ])
    if (args.command == 'new' and args.tensorboard) or \
            (args.command == 'continue' and os.path.isdir(os.path.join(this_run_folder, 'tb-logs'))):
        logging.info('Tensorboard is enabled. Creating logger.')
        from tensorboard_logger import TensorBoardLogger
        tb_logger = TensorBoardLogger(os.path.join(this_run_folder, 'tb-logs'))
    else:
        tb_logger = None

    noiser = Noiser(noise_config, device)

    model = Hidden(hidden_config, device, noiser, tb_logger)

    if args.command == 'continue':
        # if we are continuing, we have to load the model params
        assert checkpoint is not None
        logging.info(
            f'Loading checkpoint from file {loaded_checkpoint_file_name}')
        utils.model_from_checkpoint(model, checkpoint)

    logging.info('HiDDeN model: {}\n'.format(model.to_stirng()))
    logging.info('Model Configuration:\n')
    logging.info(pprint.pformat(vars(hidden_config)))
    logging.info('\nNoise configuration:\n')
    logging.info(pprint.pformat(str(noise_config)))
    logging.info('\nTraining train_options:\n')
    logging.info(pprint.pformat(vars(train_options)))

    train(model, device, hidden_config, train_options, this_run_folder,
          tb_logger, vocab)
コード例 #2
0
def main():
    # device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    parser = argparse.ArgumentParser(description='Training of HiDDeN nets')
    parser.add_argument('--hostname',
                        default=socket.gethostname(),
                        help='the  host name of the running server')
    # parser.add_argument('--size', '-s', default=128, type=int, help='The size of the images (images are square so this is height and width).')
    parser.add_argument('--data-dir',
                        '-d',
                        required=True,
                        type=str,
                        help='The directory where the data is stored.')
    parser.add_argument(
        '--runs_root',
        '-r',
        default=os.path.join('.', 'experiments'),
        type=str,
        help='The root folder where data about experiments are stored.')
    parser.add_argument('--batch-size',
                        '-b',
                        default=1,
                        type=int,
                        help='Validation batch size.')

    args = parser.parse_args()

    if args.hostname == 'ee898-System-Product-Name':
        args.data_dir = '/home/ee898/Desktop/chaoning/ImageNet'
        args.hostname = 'ee898'
    elif args.hostname == 'DL178':
        args.data_dir = '/media/user/SSD1TB-2/ImageNet'
    else:
        args.data_dir = '/workspace/data_local/imagenet_pytorch'
    assert args.data_dir

    print_each = 25

    completed_runs = [
        o for o in os.listdir(args.runs_root)
        if os.path.isdir(os.path.join(args.runs_root, o))
        and o != 'no-noise-defaults'
    ]

    print(completed_runs)

    write_csv_header = True
    current_run = args.runs_root
    print(f'Run folder: {current_run}')
    options_file = os.path.join(current_run, 'options-and-config.pickle')
    train_options, hidden_config, noise_config = utils.load_options(
        options_file)
    train_options.train_folder = os.path.join(args.data_dir, 'val')
    train_options.validation_folder = os.path.join(args.data_dir, 'val')
    train_options.batch_size = args.batch_size
    checkpoint, chpt_file_name = utils.load_last_checkpoint(
        os.path.join(current_run, 'checkpoints'))
    print(f'Loaded checkpoint from file {chpt_file_name}')

    noiser = Noiser(noise_config, device, 'jpeg')
    model = Hidden(hidden_config, device, noiser, tb_logger=None)
    utils.model_from_checkpoint(model, checkpoint)

    print('Model loaded successfully. Starting validation run...')
    _, val_data = utils.get_data_loaders(hidden_config, train_options)
    file_count = len(val_data.dataset)
    if file_count % train_options.batch_size == 0:
        steps_in_epoch = file_count // train_options.batch_size
    else:
        steps_in_epoch = file_count // train_options.batch_size + 1

    with torch.no_grad():
        noises = ['webp_10', 'webp_25', 'webp_50', 'webp_75', 'webp_90']
        for noise in noises:
            losses_accu = {}
            step = 0
            for image, _ in val_data:
                step += 1
                image = image.to(device)
                message = torch.Tensor(
                    np.random.choice(
                        [0, 1], (image.shape[0],
                                 hidden_config.message_length))).to(device)
                losses, (
                    encoded_images, noised_images,
                    decoded_messages) = model.validate_on_batch_specific_noise(
                        [image, message], noise=noise)
                if not losses_accu:  # dict is empty, initialize
                    for name in losses:
                        losses_accu[name] = AverageMeter()
                for name, loss in losses.items():
                    losses_accu[name].update(loss)
                if step % print_each == 0 or step == steps_in_epoch:
                    print(f'Step {step}/{steps_in_epoch}')
                    utils.print_progress(losses_accu)
                    print('-' * 40)

            # utils.print_progress(losses_accu)
            write_validation_loss(os.path.join(args.runs_root,
                                               'validation_run.csv'),
                                  losses_accu,
                                  noise,
                                  checkpoint['epoch'],
                                  write_header=write_csv_header)
            write_csv_header = False
コード例 #3
0
def main():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    parser = argparse.ArgumentParser(description='Training of HiDDeN nets')
    parser.add_argument('--size', '-s', default=128, type=int)
    parser.add_argument('--data-dir', '-d', required=True, type=str)

    parser.add_argument('--runs-folder',
                        '-sf',
                        default=os.path.join('.', 'runs'),
                        type=str)
    parser.add_argument('--message', '-m', default=30, type=int)
    parser.add_argument('--epochs', '-e', default=400, type=int)
    parser.add_argument('--batch-size', '-b', required=True, type=int)
    parser.add_argument('--continue-from-folder', '-c', default='', type=str)
    parser.add_argument('--tensorboard',
                        dest='tensorboard',
                        action='store_true')
    parser.add_argument('--no-tensorboard',
                        dest='tensorboard',
                        action='store_false')
    parser.set_defaults(tensorboard=True)

    args = parser.parse_args()

    checkpoint = None
    if args.continue_from_folder != '':
        this_run_folder = args.continue_from_folder
        train_options, hidden_config, noise_config = utils.load_options(
            this_run_folder)
        checkpoint = utils.load_last_checkpoint(
            os.path.join(this_run_folder, 'checkpoints'))
        train_options.start_epoch = checkpoint['epoch']
    else:
        start_epoch = 1
        train_options = TrainingOptions(
            batch_size=args.batch_size,
            number_of_epochs=args.epochs,
            train_folder=os.path.join(args.data_dir, 'train'),
            validation_folder=os.path.join(args.data_dir, 'val'),
            runs_folder=os.path.join('.', 'runs'),
            start_epoch=start_epoch)

        # noise_config = [
        #     {
        #         'type': 'resize',
        #         'resize_ratio': 0.4
        # }]
        noise_config = []
        hidden_config = HiDDenConfiguration(H=args.size,
                                            W=args.size,
                                            message_length=args.message,
                                            encoder_blocks=4,
                                            encoder_channels=64,
                                            decoder_blocks=7,
                                            decoder_channels=64,
                                            use_discriminator=True,
                                            use_vgg=False,
                                            discriminator_blocks=3,
                                            discriminator_channels=64,
                                            decoder_loss=1,
                                            encoder_loss=0.7,
                                            adversarial_loss=1e-3)

        this_run_folder = utils.create_folder_for_run(train_options)
        with open(os.path.join(this_run_folder, 'options-and-config.pickle'),
                  'wb+') as f:
            pickle.dump(train_options, f)
            pickle.dump(noise_config, f)
            pickle.dump(hidden_config, f)

    noiser = Noiser(noise_config, device)

    if args.tensorboard:
        print('Tensorboard is enabled. Creating logger.')
        from tensorboard_logger import TensorBoardLogger
        tb_logger = TensorBoardLogger(os.path.join(this_run_folder, 'tb-logs'))
    else:
        tb_logger = None

    model = Hidden(hidden_config, device, noiser, tb_logger)

    if args.continue_from_folder != '':
        # if we are continuing, we have to load the model params
        assert checkpoint is not None
        utils.model_from_checkpoint(model, checkpoint)

    print('HiDDeN model: {}\n'.format(model.to_stirng()))
    print('Model Configuration:\n')
    pprint.pprint(vars(hidden_config))
    print('\nNoise configuration:\n')
    pprint.pprint(str(noise_config))
    print('\nTraining train_options:\n')
    pprint.pprint(vars(train_options))
    print()

    train(model, device, hidden_config, train_options, this_run_folder,
          tb_logger)
コード例 #4
0
def main():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    parent_parser = argparse.ArgumentParser(
        description='Training of HiDDeN nets')
    subparsers = parent_parser.add_subparsers(dest='command',
                                              help='Sub-parser for commands')
    new_run_parser = subparsers.add_parser('new', help='starts a new run')
    new_run_parser.add_argument('--data-dir',
                                '-d',
                                required=True,
                                type=str,
                                help='The directory where the data is stored.')
    new_run_parser.add_argument('--batch-size',
                                '-b',
                                required=True,
                                type=int,
                                help='The batch size.')
    new_run_parser.add_argument('--epochs',
                                '-e',
                                default=300,
                                type=int,
                                help='Number of epochs to run the simulation.')
    new_run_parser.add_argument('--name',
                                required=True,
                                type=str,
                                help='The name of the experiment.')
    new_run_parser.add_argument('--adv_loss',
                                default=0,
                                required=False,
                                type=float,
                                help='Coefficient of the adversarial loss.')
    new_run_parser.add_argument('--residual',
                                default=0,
                                required=False,
                                type=int,
                                help='If to use residual or not.')
    new_run_parser.add_argument('--video_dataset',
                                default=0,
                                required=False,
                                type=int,
                                help='If to use video dataset or not.')
    new_run_parser.add_argument(
        '--save-dir',
        '-sd',
        default='runs',
        required=True,
        type=str,
        help='The save directory where the result is stored.')

    new_run_parser.add_argument(
        '--size',
        '-s',
        default=128,
        type=int,
        help=
        'The size of the images (images are square so this is height and width).'
    )
    new_run_parser.add_argument('--message',
                                '-m',
                                default=30,
                                type=int,
                                help='The length in bits of the watermark.')
    new_run_parser.add_argument(
        '--continue-from-folder',
        '-c',
        default='',
        type=str,
        help=
        'The folder from where to continue a previous run. Leave blank if you are starting a new experiment.'
    )
    # parser.add_argument('--tensorboard', dest='tensorboard', action='store_true',
    #                     help='If specified, use adds a Tensorboard log. On by default')
    new_run_parser.add_argument('--tensorboard',
                                action='store_true',
                                help='Use to switch on Tensorboard logging.')
    new_run_parser.add_argument('--enable-fp16',
                                dest='enable_fp16',
                                action='store_true',
                                help='Enable mixed-precision training.')

    new_run_parser.add_argument(
        '--noise',
        nargs='*',
        action=NoiseArgParser,
        help=
        "Noise layers configuration. Use quotes when specifying configuration, e.g. 'cropout((0.55, 0.6), (0.55, 0.6))'"
    )
    new_run_parser.add_argument('--hostname',
                                default=socket.gethostname(),
                                help='the  host name of the running server')
    new_run_parser.add_argument(
        '--cover-dependent',
        default=1,
        required=False,
        type=int,
        help='If to use cover dependent architecture or not.')
    new_run_parser.add_argument('--jpeg_type',
                                '-j',
                                required=False,
                                type=str,
                                default='jpeg',
                                help='Jpeg type used in the combined2 noise.')

    new_run_parser.set_defaults(tensorboard=False)
    new_run_parser.set_defaults(enable_fp16=False)

    continue_parser = subparsers.add_parser('continue',
                                            help='Continue a previous run')
    continue_parser.add_argument(
        '--folder',
        '-f',
        required=True,
        type=str,
        help='Continue from the last checkpoint in this folder.')
    continue_parser.add_argument(
        '--data-dir',
        '-d',
        required=False,
        type=str,
        help=
        'The directory where the data is stored. Specify a value only if you want to override the previous value.'
    )
    continue_parser.add_argument(
        '--epochs',
        '-e',
        required=False,
        type=int,
        help=
        'Number of epochs to run the simulation. Specify a value only if you want to override the previous value.'
    )

    # continue_parser.add_argument('--tensorboard', action='store_true',
    #                             help='Override the previous setting regarding tensorboard logging.')

    # Setting up a seed for debug
    seed = 123
    torch.manual_seed(seed)
    np.random.seed(seed)

    args = parent_parser.parse_args()
    checkpoint = None
    loaded_checkpoint_file_name = None
    print(args.cover_dependent)

    if not args.video_dataset:
        if args.hostname == 'ee898-System-Product-Name':
            args.data_dir = '/home/ee898/Desktop/chaoning/ImageNet'
            args.hostname = 'ee898'
        elif args.hostname == 'DL178':
            args.data_dir = '/media/user/SSD1TB-2/ImageNet'
        else:
            args.data_dir = '/workspace/data_local/imagenet_pytorch'
    else:
        if args.hostname == 'ee898-System-Product-Name':
            args.data_dir = '/home/ee898/Desktop/chaoning/ImageNet'
            args.hostname = 'ee898'
        elif args.hostname == 'DL178':
            args.data_dir = '/media/user/SSD1TB-2/ImageNet'
        else:
            args.data_dir = './oops_dataset/oops_video'
    assert args.data_dir

    if args.command == 'continue':
        this_run_folder = args.folder
        options_file = os.path.join(this_run_folder,
                                    'options-and-config.pickle')
        train_options, hidden_config, noise_config = utils.load_options(
            options_file)
        checkpoint, loaded_checkpoint_file_name = utils.load_last_checkpoint(
            os.path.join(this_run_folder, 'checkpoints'))
        train_options.start_epoch = checkpoint['epoch'] + 1
        if args.data_dir is not None:
            train_options.train_folder = os.path.join(args.data_dir, 'train')
            train_options.validation_folder = os.path.join(
                args.data_dir, 'val')
        if args.epochs is not None:
            if train_options.start_epoch < args.epochs:
                train_options.number_of_epochs = args.epochs
            else:
                print(
                    f'Command-line specifies of number of epochs = {args.epochs}, but folder={args.folder} '
                    f'already contains checkpoint for epoch = {train_options.start_epoch}.'
                )
                exit(1)

    else:
        assert args.command == 'new'
        start_epoch = 1
        train_options = TrainingOptions(
            batch_size=args.batch_size,
            number_of_epochs=args.epochs,
            train_folder=os.path.join(args.data_dir, 'train'),
            validation_folder=os.path.join(args.data_dir, 'val'),
            runs_folder=os.path.join('.', args.save_dir),
            start_epoch=start_epoch,
            experiment_name=args.name,
            video_dataset=args.video_dataset)

        noise_config = args.noise if args.noise is not None else []
        hidden_config = HiDDenConfiguration(
            H=args.size,
            W=args.size,
            message_length=args.message,
            encoder_blocks=4,
            encoder_channels=64,
            decoder_blocks=7,
            decoder_channels=64,
            use_discriminator=True,
            use_vgg=False,
            discriminator_blocks=3,
            discriminator_channels=64,
            decoder_loss=1,
            encoder_loss=0.7,
            adversarial_loss=args.adv_loss,
            cover_dependent=args.cover_dependent,
            residual=args.residual,
            enable_fp16=args.enable_fp16)

        this_run_folder = utils.create_folder_for_run(
            train_options.runs_folder, args.name)
        with open(os.path.join(this_run_folder, 'options-and-config.pickle'),
                  'wb+') as f:
            pickle.dump(train_options, f)
            pickle.dump(noise_config, f)
            pickle.dump(hidden_config, f)

    logging.basicConfig(level=logging.INFO,
                        format='%(message)s',
                        handlers=[
                            logging.FileHandler(
                                os.path.join(
                                    this_run_folder,
                                    f'{train_options.experiment_name}.log')),
                            logging.StreamHandler(sys.stdout)
                        ])
    if (args.command == 'new' and args.tensorboard) or \
            (args.command == 'continue' and os.path.isdir(os.path.join(this_run_folder, 'tb-logs'))):
        logging.info('Tensorboard is enabled. Creating logger.')
        from tensorboard_logger import TensorBoardLogger
        tb_logger = TensorBoardLogger(os.path.join(this_run_folder, 'tb-logs'))
    else:
        tb_logger = None

    noiser = Noiser(noise_config, device, args.jpeg_type)
    model = Hidden(hidden_config, device, noiser, tb_logger)

    if args.command == 'continue':
        # if we are continuing, we have to load the model params
        assert checkpoint is not None
        logging.info(
            f'Loading checkpoint from file {loaded_checkpoint_file_name}')
        utils.model_from_checkpoint(model, checkpoint)

    logging.info('HiDDeN model: {}\n'.format(model.to_stirng()))
    logging.info('Model Configuration:\n')
    logging.info(pprint.pformat(vars(hidden_config)))
    logging.info('\nNoise configuration:\n')
    logging.info(pprint.pformat(str(noise_config)))
    logging.info('\nTraining train_options:\n')
    logging.info(pprint.pformat(vars(train_options)))

    # train(model, device, hidden_config, train_options, this_run_folder, tb_logger)
    # train_other_noises(model, device, hidden_config, train_options, this_run_folder, tb_logger)
    if str(args.noise[0]) == "WebP()":
        noise = 'webp'
    elif str(args.noise[0]) == "JpegCompression2000()":
        noise = 'jpeg2000'
    elif str(args.noise[0]) == "MPEG4()":
        noise = 'mpeg4'
    elif str(args.noise[0]) == "H264()":
        noise = 'h264'
    elif str(args.noise[0]) == "XVID()":
        noise = 'xvid'
    elif str(args.noise[0]) == "DiffQFJpegCompression2()":
        noise = 'diff_qf_jpeg2'
    elif str(args.noise[0]) == "DiffCorruptions()":
        noise = 'diff_corruptions'
    else:
        noise = 'jpeg'
    train_own_noise(model, device, hidden_config, train_options,
                    this_run_folder, tb_logger, noise)
コード例 #5
0
def main():
    # device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    device = torch.device('cpu')

    parser = argparse.ArgumentParser(description='Training of HiDDeN nets')
    # parser.add_argument('--size', '-s', default=128, type=int, help='The size of the images (images are square so this is height and width).')
    parser.add_argument('--data-dir',
                        '-d',
                        required=True,
                        type=str,
                        help='The directory where the data is stored.')
    parser.add_argument(
        '--runs_root',
        '-r',
        default=os.path.join('.', 'experiments'),
        type=str,
        help='The root folder where data about experiments are stored.')

    args = parser.parse_args()
    print_each = 25

    completed_runs = [
        o for o in os.listdir(args.runs_root)
        if os.path.isdir(os.path.join(args.runs_root, o))
        and o != 'no-noise-defaults'
    ]

    print(completed_runs)

    write_csv_header = True
    for run_name in completed_runs:
        current_run = os.path.join(args.runs_root, run_name)
        print(f'Run folder: {current_run}')
        options_file = os.path.join(current_run, 'options-and-config.pickle')
        train_options, hidden_config, noise_config = utils.load_options(
            options_file)
        train_options.train_folder = os.path.join(args.data_dir, 'val')
        train_options.validation_folder = os.path.join(args.data_dir, 'val')
        train_options.batch_size = 4
        checkpoint = utils.load_last_checkpoint(
            os.path.join(current_run, 'checkpoints'))

        noiser = Noiser(noise_config, device)
        model = Hidden(hidden_config, device, noiser, tb_logger=None)
        utils.model_from_checkpoint(model, checkpoint)

        print('Model loaded successfully. Starting validation run...')
        _, val_data = utils.get_data_loaders(hidden_config, train_options)
        file_count = len(val_data.dataset)
        if file_count % train_options.batch_size == 0:
            steps_in_epoch = file_count // train_options.batch_size
        else:
            steps_in_epoch = file_count // train_options.batch_size + 1

        losses_accu = {}
        step = 0
        for image, _ in val_data:
            step += 1
            image = image.to(device)
            message = torch.Tensor(
                np.random.choice(
                    [0, 1],
                    (image.shape[0], hidden_config.message_length))).to(device)
            losses, (encoded_images, noised_images,
                     decoded_messages) = model.validate_on_batch(
                         [image, message])
            if not losses_accu:  # dict is empty, initialize
                for name in losses:
                    losses_accu[name] = []
            for name, loss in losses.items():
                losses_accu[name].append(loss)
            if step % print_each == 0:
                print(f'Step {step}/{steps_in_epoch}')
                utils.print_progress(losses_accu)
                print('-' * 40)

        utils.print_progress(losses_accu)
        write_validation_loss(os.path.join(args.runs_root,
                                           'validation_run.csv'),
                              losses_accu,
                              run_name,
                              checkpoint['epoch'],
                              write_header=write_csv_header)
        write_csv_header = False
コード例 #6
0
ファイル: main.py プロジェクト: Dinamite1990/HiDDeN
def main():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    parser = argparse.ArgumentParser(description='Training of HiDDeN nets')
    parser.add_argument('--data-dir',
                        '-d',
                        required=True,
                        type=str,
                        help='The directory where the data is stored.')
    parser.add_argument('--batch-size',
                        '-b',
                        required=True,
                        type=int,
                        help='The batch size.')
    parser.add_argument('--epochs',
                        '-e',
                        default=400,
                        type=int,
                        help='Number of epochs to run the simulation.')
    parser.add_argument('--name',
                        required=True,
                        type=str,
                        help='The name of the experiment.')

    parser.add_argument(
        '--runs-folder',
        '-sf',
        default=os.path.join('.', 'runs'),
        type=str,
        help='The root folder where data about experiments are stored.')
    parser.add_argument(
        '--size',
        '-s',
        default=128,
        type=int,
        help=
        'The size of the images (images are square so this is height and width).'
    )
    parser.add_argument('--message',
                        '-m',
                        default=30,
                        type=int,
                        help='The length in bits of the watermark.')
    parser.add_argument(
        '--continue-from-folder',
        '-c',
        default='',
        type=str,
        help=
        'The folder from where to continue a previous run. Leave blank if you are starting a new experiment.'
    )
    parser.add_argument(
        '--tensorboard',
        dest='tensorboard',
        action='store_true',
        help='If specified, use adds a Tensorboard log. On by default')
    parser.add_argument('--no-tensorboard',
                        dest='tensorboard',
                        action='store_false',
                        help='Use to switch off Tensorboard logging.')

    parser.add_argument(
        '--noise',
        nargs='*',
        action=NoiseArgParser,
        help=
        "Noise layers configuration. Use quotes when specifying configuration, e.g. 'cropout((0.55, 0.6), (0.55, 0.6))'"
    )

    parser.set_defaults(tensorboard=True)
    args = parser.parse_args()

    checkpoint = None
    if args.continue_from_folder != '':
        this_run_folder = args.continue_from_folder
        options_file = os.path.join(this_run_folder,
                                    'options-and-config.pickle')
        train_options, hidden_config, noise_config = utils.load_options(
            options_file)
        checkpoint = utils.load_last_checkpoint(
            os.path.join(this_run_folder, 'checkpoints'))
        train_options.start_epoch = checkpoint['epoch'] + 1
    else:
        start_epoch = 1
        train_options = TrainingOptions(
            batch_size=args.batch_size,
            number_of_epochs=args.epochs,
            train_folder=os.path.join(args.data_dir, 'train'),
            validation_folder=os.path.join(args.data_dir, 'val'),
            runs_folder=os.path.join('.', 'runs'),
            start_epoch=start_epoch,
            experiment_name=args.name)

        noise_config = args.noise if args.noise is not None else []
        hidden_config = HiDDenConfiguration(H=args.size,
                                            W=args.size,
                                            message_length=args.message,
                                            encoder_blocks=4,
                                            encoder_channels=64,
                                            decoder_blocks=7,
                                            decoder_channels=64,
                                            use_discriminator=True,
                                            use_vgg=False,
                                            discriminator_blocks=3,
                                            discriminator_channels=64,
                                            decoder_loss=1,
                                            encoder_loss=0.7,
                                            adversarial_loss=1e-3)

        this_run_folder = utils.create_folder_for_run(
            train_options.runs_folder, args.name)
        with open(os.path.join(this_run_folder, 'options-and-config.pickle'),
                  'wb+') as f:
            pickle.dump(train_options, f)
            pickle.dump(noise_config, f)
            pickle.dump(hidden_config, f)

    logging.basicConfig(level=logging.INFO,
                        format='%(message)s',
                        handlers=[
                            logging.FileHandler(
                                os.path.join(this_run_folder,
                                             f'{args.name}.log')),
                            logging.StreamHandler(sys.stdout)
                        ])
    noiser = Noiser(noise_config, device)

    if args.tensorboard:
        logging.info('Tensorboard is enabled. Creating logger.')
        from tensorboard_logger import TensorBoardLogger
        tb_logger = TensorBoardLogger(os.path.join(this_run_folder, 'tb-logs'))
    else:
        tb_logger = None

    model = Hidden(hidden_config, device, noiser, tb_logger)

    if args.continue_from_folder != '':
        # if we are continuing, we have to load the model params
        assert checkpoint is not None
        utils.model_from_checkpoint(model, checkpoint)

    logging.info('HiDDeN model: {}\n'.format(model.to_stirng()))
    logging.info('Model Configuration:\n')
    logging.info(pprint.pformat(vars(hidden_config)))
    logging.info('\nNoise configuration:\n')
    logging.info(pprint.pformat(str(noise_config)))
    logging.info('\nTraining train_options:\n')
    logging.info(pprint.pformat(vars(train_options)))

    train(model, device, hidden_config, train_options, this_run_folder,
          tb_logger)
コード例 #7
0
ファイル: main.py プロジェクト: chenhsiu48/HiDDeN
def main():
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

    parent_parser = argparse.ArgumentParser(description='Training of HiDDeN nets')
    subparsers = parent_parser.add_subparsers(dest='command', help='Sub-parser for commands')
    new_run_parser = subparsers.add_parser('new', help='starts a new run')
    new_run_parser.add_argument('--data-dir', '-d', required=True, type=str,
                                help='The directory where the data is stored.')
    new_run_parser.add_argument('--batch-size', '-b', default=30, type=int, help='The batch size.')
    new_run_parser.add_argument('--epochs', '-e', default=300, type=int, help='Number of epochs to run the simulation.')
    new_run_parser.add_argument('--name', required=True, type=str, help='The name of the experiment.')

    new_run_parser.add_argument('--size', '-s', default=128, type=int, help='The size of the images (images are square so this is height and width).')
    new_run_parser.add_argument('--in_channels', default=3, type=int, help='input channel size')
    new_run_parser.add_argument('--message', '-m', default=32, type=int, help='The length in bits of the watermark.')
    new_run_parser.add_argument('--ratio', default=0.2, type=float, help='ratio of dataset.')
    new_run_parser.add_argument('--continue-from-folder', '-c', default='', type=str,
                                help='The folder from where to continue a previous run. Leave blank if you are starting a new experiment.')
    new_run_parser.add_argument('--enable-fp16', dest='enable_fp16', action='store_true',
                                help='Enable mixed-precision training.')

    new_run_parser.add_argument('--noise', nargs='*', action=NoiseArgParser,
                                help="Noise layers configuration. Use quotes when specifying configuration, e.g. 'cropout((0.55, 0.6), (0.55, 0.6))'")

    new_run_parser.set_defaults(enable_fp16=False)

    continue_parser = subparsers.add_parser('continue', help='Continue a previous run')
    continue_parser.add_argument('--folder', '-f', required=True, type=str,
                                 help='Continue from the last checkpoint in this folder.')
    continue_parser.add_argument('--data-dir', '-d', required=False, type=str,
                                 help='The directory where the data is stored. Specify a value only if you want to override the previous value.')
    continue_parser.add_argument('--epochs', '-e', required=False, type=int,
                                help='Number of epochs to run the simulation. Specify a value only if you want to override the previous value.')

    args = parent_parser.parse_args()
    checkpoint = None
    loaded_checkpoint_file_name = None

    if args.command == 'continue':
        options_file = os.path.join(args.folder, 'options-and-config.pickle')
        train_options, hidden_config, noise_config = utils.load_options(options_file)
        checkpoint, loaded_checkpoint_file_name = utils.load_last_checkpoint(os.path.join(args.folder, 'checkpoints'))
        train_options.start_epoch = checkpoint['epoch'] + 1
        train_options.best_epoch = checkpoint['best_epoch']
        train_options.best_cond = checkpoint['best_cond']
        if args.epochs is not None:
            if train_options.start_epoch < args.epochs:
                train_options.number_of_epochs = args.epochs
            else:
                print(f'Command-line specifies of number of epochs = {args.epochs}, but folder={args.folder} '
                      f'already contains checkpoint for epoch = {train_options.start_epoch}.')
                exit(1)

    else:
        assert args.command == 'new'
        start_epoch = 1
        train_options = TrainingOptions(
            batch_size=args.batch_size,
            number_of_epochs=args.epochs, data_ratio=args.ratio,
            data_dir=args.data_dir,
            runs_folder='./runs', tb_logger_folder='./logger',
            start_epoch=start_epoch, experiment_name=f'{args.name}_r{int(100*args.ratio):03d}b{args.size}ch{args.in_channels}m{args.message}')

        noise_config = args.noise if args.noise is not None else []
        hidden_config = HiDDenConfiguration(H=args.size, W=args.size,input_channels=args.in_channels,
                                            message_length=args.message,
                                            encoder_blocks=4, encoder_channels=64,
                                            decoder_blocks=7, decoder_channels=64,
                                            use_discriminator=True,
                                            use_vgg=False,
                                            discriminator_blocks=3, discriminator_channels=64,
                                            decoder_loss=1,
                                            encoder_loss=0.7,
                                            adversarial_loss=1e-3,
                                            enable_fp16=args.enable_fp16
                                            )

        utils.create_folder_for_run(train_options)
        with open(train_options.options_file, 'wb+') as f:
            pickle.dump(train_options, f)
            pickle.dump(noise_config, f)
            pickle.dump(hidden_config, f)


    logging.basicConfig(level=logging.INFO,
                        format='%(message)s',
                        handlers=[
                            logging.FileHandler(os.path.join(train_options.this_run_folder, f'{train_options.experiment_name}.log')),
                            logging.StreamHandler(sys.stdout)
                        ])
    logging.info(f'Tensorboard is enabled. Creating logger at {train_options.tb_logger_dir}')
    tb_logger = TensorBoardLogger(train_options.tb_logger_dir)

    noiser = Noiser(noise_config, device)
    model = Hidden(hidden_config, device, noiser, tb_logger)

    if args.command == 'continue':
        # if we are continuing, we have to load the model params
        assert checkpoint is not None
        logging.info(f'Loading checkpoint from file {loaded_checkpoint_file_name}')
        utils.model_from_checkpoint(model, checkpoint)

    logging.info('HiDDeN model: {}\n'.format(model.to_stirng()))
    logging.info('Model Configuration:\n')
    logging.info(pprint.pformat(vars(hidden_config)))
    logging.info('\nNoise configuration:\n')
    logging.info(pprint.pformat(str(noise_config)))
    logging.info('\nTraining train_options:\n')
    logging.info(pprint.pformat(vars(train_options)))

    train(model, device, hidden_config, train_options, train_options.this_run_folder, tb_logger)