コード例 #1
0
ファイル: main.py プロジェクト: refiute/primitiv_practice
def main():
    args = get_arguments()

    print("initializing device ... ", end="", file=sys.stderr, flush=True)
    dev = D.Naive() if args.gpu < 0 else D.CUDA(args.gpu)
    Device.set_default(dev)
    print("done.", file=sys.stderr)

    mode = args.mode
    prefix = args.model
    if mode == "train":
        encdec = EncoderDecoder(args.dropout)
        encdec.init(args.src_vocab, args.trg_vocab, args.embed, args.hidden)
        optimizer = O.Adam()
        optimizer.set_weight_decay(1e-6)
        optimizer.set_gradient_clipping(5)
        train(encdec, optimizer, args, 1e10)
    elif mode == "resume":
        print("loading model/optimizer ... ",
              end="",
              file=sys.stderr,
              flush=True)
        encdec = EncoderDecoder(args.dropout)
        encdec.load(prefix + ".model")
        optimizer = O.Adam()
        optimizer.load(prefix + ".optimizer")
        valid_ppl = load_ppl(prefix + ".valid_ppl")
        print("done.", file=sys.stderr)
        train(encdec, optimizer, args, valid_ppl)
    else:
        print("loading model ... ", end="", file=sys.stderr, flush=True)
        encdec = EncoderDecoder(args.dropout)
        encdec.load(prefix + ".model")
        print("done.", file=sys.stderr)
        test(encdec, args)
コード例 #2
0
def main():
    parser = ArgumentParser()
    parser.add_argument("mode", help="(train|resume|test)")
    parser.add_argument("model_prefix", help="prefix of the model files.")
    args = parser.parse_args()

    mode = args.mode
    prefix = args.model_prefix
    print("mode:", mode, file=sys.stderr)
    print("prefix:", prefix, file=sys.stderr)

    if mode not in ("train", "resume", "test"):
        print("unknown mode:", mode, file=sys.stderr)
        return

    print("initializing device ... ", end="", file=sys.stderr)
    sys.stderr.flush()
    dev = D.CUDA(0)
    Device.set_default(dev)
    print("done.", file=sys.stderr)

    if mode == "train":
        encdec = AttentionalEncoderDecoder()
        encdec.init(SRC_VOCAB_SIZE, TRG_VOCAB_SIZE, NUM_EMBED_UNITS,
                    NUM_HIDDEN_UNITS)
        optimizer = O.Adam()
        optimizer.set_weight_decay(1e-6)
        optimizer.set_gradient_clipping(5)
        train(encdec, optimizer, prefix, 1e10)
    elif mode == "resume":
        print("loading model/optimizer ... ", end="", file=sys.stderr)
        sys.stderr.flush()
        encdec = AttentionalEncoderDecoder()
        encdec.load(prefix + ".model")
        optimizer = O.Adam()
        optimizer.load(prefix + ".optimizer")
        valid_ppl = load_ppl(prefix + ".valid_ppl")
        print("done.", file=sys.stderr)
        train(encdec, optimizer, prefix, valid_ppl)
    else:
        print("loading model ... ", end="", file=sys.stderr)
        sys.stderr.flush()
        encdec = AttentionalEncoderDecoder()
        encdec.load(prefix + ".model")
        print("done.", file=sys.stderr)
        test(encdec)
コード例 #3
0
ファイル: encdec.py プロジェクト: vbkaisetsu/primitiv
def main():
    parser = ArgumentParser()
    parser.add_argument("mode")
    parser.add_argument("model_prefix")
    args = parser.parse_args()

    mode = args.mode
    prefix = args.model_prefix
    print("mode:", mode, file=sys.stderr)
    print("prefix:", prefix, file=sys.stderr)

    if mode not in ("train", "resume", "test"):
        print("unknown mode:", mode, file=sys.stderr)
        return

    print("initializing device ... ", end="", file=sys.stderr)
    sys.stderr.flush()

    dev = D.Naive()  # = D.CUDA(0)
    Device.set_default(dev)

    print("done.", file=sys.stderr)

    if mode == "train":
        encdec = EncoderDecoder("encdec", SRC_VOCAB_SIZE, TRG_VOCAB_SIZE,
                                NUM_EMBED_UNITS, NUM_HIDDEN_UNITS,
                                DROPOUT_RATE)
        trainer = T.Adam()
        trainer.set_weight_decay(1e-6)
        trainer.set_gradient_clipping(5)
        train(encdec, trainer, prefix, 1e10)
    elif mode == "resume":
        print("loading model/trainer ... ", end="", file=sys.stderr)
        sys.stderr.flush()
        encdec = EncoderDecoder.load("encdec", prefix + '.')
        trainer = T.Adam()
        trainer.load(prefix + ".trainer.config")
        valid_ppl = load_ppl(prefix + ".valid_ppl.config")
        print("done.", file=sys.stderr)
        train(encdec, trainer, prefix, valid_ppl)
    else:  # mode == "test"
        print("loading model ... ", end="", file=sys.stderr)
        sys.stderr.flush()
        encdec = EncoderDecoder.load("encdec", prefix + '.')
        print("done.", file=sys.stderr)
        test(encdec)