コード例 #1
0
def get_train_instances(train, num_negatives):
    user_input, item_input, labels = [], [], []
    num_users = train.shape[0]
    print(train.keys()[:10])
    print(train.values()[:10])
    for (u, i) in train.keys():
        # positive instance
        user_input.append(u)
        item_input.append(i)
        rating = train[u, i]
        labels.append(rating)
        # negative instances
        for t in xrange(num_negatives):
            j = np.random.randint(num_items)
            while train.has_key((u, j)):
                j = np.random.randint(num_items)
            user_input.append(u)
            item_input.append(j)
            labels.append(0)
    ratings = utils.load_ratings()
    user_inputs = [x[0] for x in ratings]
    item_inputs = [x[1] for x in ratings]
    labels = [x[2] for x in ratings]
    # labels = keras.utils.np_utils.to_categorical(labels, nb_classes=6)
    return user_input, item_input, labels
コード例 #2
0
ファイル: test.py プロジェクト: srikanth3569/movie
 def setUp(self):
     #Load data
     ratings = load_ratings('../data/ml-latest-small/ratings.csv')
     self.movies = load_movies('../data/ml-latest-small/movies.csv')
     
     #Train & Test data
     train, test = ratings.split_train_test(percent=80)
     self.train = train
     self.test = test
     
     self.svd = create_svd_model(self.train)
コード例 #3
0
import numpy as np

from item2vec import Item2Vector
from metrics import n_precision
from metrics import n_recall
from utils import load_ratings
from utils import get_user_movie_dictionary
from utils import split_matrix
from utils import transform_binary_matrix

if __name__ == '__main__':
    # Load and Preprocess Dataset
    rating_df = load_ratings('ratings.csv')
    user2idx, movie2idx = get_user_movie_dictionary(rating_df)
    print(f'# of user: {len(user2idx)}\t# of movie: {len(movie2idx)}')

    rating_matrix, stat =\
        transform_binary_matrix(rating_df, user2idx, movie2idx)
    print(f'Positive Feedback: {stat["pos"]}',
          f'\tNegative Feedback: {stat["neg"]}')

    rating_matrix_train, rating_matrix_val =\
        split_matrix(rating_matrix, user2idx, movie2idx)

    print(f'Train: {rating_matrix_train.count_nonzero()}\t',
          f'Validation Size: {rating_matrix_val.count_nonzero()}')

    # Train Item2Vec Model
    model = Item2Vector(item_dim=len(movie2idx), embedding_dim=100)
    model.train(rating_matrix_train)
コード例 #4
0
ファイル: recommender.py プロジェクト: srikanth3569/movie
6. Save & quit
    """
    
    choice = input("Enter your choice: ")
    
    return choice


if __name__ == "__main__":
    
    #Load data
    try:
        ratings = Data()
        ratings.load('../data/myratings.data')
    except:
        ratings = load_ratings('../data/ml-latest-small/ratings.csv')
    movies = load_movies('../data/ml-latest-small/movies.csv')
    tags = load_tags('../data/ml-latest-small/tags.csv')
    
    os.system('clear')
    print """
#####################################################
####           COMMAND LINE RECOMMENDER          ####
#####################################################

A minimalistic command line recommender system using
SVD decomposistion.
"""
    
    # Create a user
    user_id = str(raw_input("Please enter your username: "))
コード例 #5
0
def main(_):
    print(FLAGS.__flags)
    FLAGS.data = load_ratings('%s/ratings.dat' % FLAGS.input_dir, random_state=FLAGS.random_state)
    model = AutoRec(**FLAGS.__flags)
    model.train(n_epochs=FLAGS.n_epochs)
コード例 #6
0
ファイル: recommender.py プロジェクト: zermelozf/clrec
if __name__ == "__main__":
    
    # Load data from custom path
    try:
        data_path = sys.argv[1]
    except IndexError:
        data_path = '/data'
    
    
    #Load data
    ratings = Data()
    if os.path.isfile(data_path + '/myratings.data'):
        ratings.load(data_path + '/myratings.data')
    else:
        try:
            ratings = load_ratings(data_path + '/ratings.csv')
        except IOError:
            raise Exception('Data not found. Please specify it.'
                            % data_path)
    movies = load_movies(data_path + '/movies.csv')
    tags = load_tags(data_path + '/tags.csv')
            
    os.system('clear')
    print """
#####################################################
####           COMMAND LINE RECOMMENDER          ####
#####################################################

A minimalistic command line recommender system using
SVD decomposistion.
"""