コード例 #1
0
def make_ucf_video_names(root_path, list_path):

    video_names, labels = load_video_list(list_path)

    count = 0
    final_labels = []
    final_videos = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        #print(video_names[i])
        if not os.path.exists(video_path):
            print('%s does not exist!!!' % (video_path))
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        if not os.path.exists(n_frames_file_path):
            print('%s does not exist n_frames!!!' % (video_path))
            continue
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            print('%s has 0 frame!!!' % (video_path))
            continue

        final_videos.append(video_path)
        final_labels.append(labels[i])
        count += 1
    print('Load %d videos' % (count))

    return final_videos, final_labels
コード例 #2
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path + '.avi'):
            continue

        frame_path = os.path.join("/nfs_mount/datasets/UCF101/UCF-101/frames_fps25_256", video_names[i])
        n_frames_root = "/nfs_mount/code/ananth/code/Verisk/3D-ResNets-PyTorch/datasets/nframes"
        n_frames_file_path = os.path.join(n_frames_root, video_names[i], 'n_frames')

        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames < 80:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_names[i].split('/')[1]
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        ## if n_samples_for_each_video == 1:
        ## this is to create 1 sample from each video that works for both training and test video
        ## need to change this to above if statement if actual evaluation is done on ucf101
        ## n_samples_for_each_video is different for training set and val set
        if True:
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = int(max(1,
                           math.ceil((n_frames - 1 - sample_duration) /
                                     (n_samples_for_each_video - 1))))
            else:
                step = sample_duration
            for j in range(1, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                    range(j, min(n_frames + 1, j + sample_duration)))
                dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #3
0
def make_dataset(
    root_path, annotation_path, subset, n_samples_for_each_video, sample_duration
):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print("dataset loading [{}/{}]".format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            print("video path not exists: ", video_path)
            continue

        n_frames_file_path = os.path.join(video_path, "n_frames")
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            "video": video_path,
            "segment": [begin_t, end_t],
            "n_frames": n_frames,
            "video_id": video_names[i].split("/")[1],
        }
        if len(annotations) != 0:
            sample["label"] = class_to_idx[annotations[i]["label"]]
        else:
            sample["label"] = -1

        if n_samples_for_each_video == 1:
            sample["frame_indices"] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = max(
                    1,
                    math.ceil(
                        (n_frames - 1 - sample_duration)
                        / (n_samples_for_each_video - 1)
                    ),
                )
            else:
                step = sample_duration
            for j in range(1, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j["frame_indices"] = list(
                    range(j, min(n_frames + 1, j + sample_duration))
                )
                dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #4
0
ファイル: ucf101.py プロジェクト: allenwang28/EE382V-Final
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        audio_path = os.path.join(video_path,
                                  os.path.basename(video_path + '.wav'))
        if not os.path.exists(audio_path):
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_names[i].split('/')[1]
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        if n_samples_for_each_video == 1:
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = max(
                    1,
                    math.ceil((n_frames - 1 - sample_duration) /
                              (n_samples_for_each_video - 1)))
            else:
                step = sample_duration
            for j in range(1, n_frames, int(step)):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                    range(j, min(n_frames + 1, j + sample_duration)))
                dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #5
0
ファイル: activitynet.py プロジェクト: WendaDeng/ckmn
def make_dataset(root_path, annotation_path, subset):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        n_frames_file_path = os.path.join(video_path, 'number_Frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue
        frame_indices_file_path = os.path.join(video_path, 'frames_name')
        frame_indices = load_list_file(frame_indices_file_path)

        sample = {
            'video': video_path,
            'n_frames': n_frames,
            'frame_indices': frame_indices,
            'video_id': video_names[i]
        }
        class_indexs = annotations[i]['label']
        if not '-' in class_indexs:
            temp_label = np.zeros(len(class_to_idx))
            temp_label[int(class_indexs)] = 1

            #temp_label = int(class_indexs)
            #temp_map = np.zeros(len(class_to_idx))
            #temp_map[int(class_indexs)] = 1

            sample['label'] = temp_label
            #sample['map'] = temp_map
        else:
            temp = class_indexs.split('-')
            temp_label = np.zeros(len(class_to_idx))
            for class_index in temp:
                temp_label[int(class_index)] = 1

            #temp_label= int(temp[0])
            #temp_map = np.zeros(len(class_to_idx))
            #temp_map[int(temp[0])] = 1

            sample['label'] = temp_label
            #sample['map'] = temp_map
        dataset.append(sample)

    return dataset
コード例 #6
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    data = load_annotation_data(annotation_path) # json 파일 load
    video_names, annotations = get_video_names_and_annotations(data, subset) # video_names = [ 'label/'key(영상이름)', 'label/key' ... ], annotations = [ value['annotations'], ...  ]
    class_to_idx = get_class_labels(data) # class_to_idx = { 'a' : 0 , 'b' : 1 , 'c' : 2 ...}
    idx_to_class = {}
    for name, label in class_to_idx.items():
        
        idx_to_class[label] = name  # idx_to_class = { 0 : 'a' , 1 : 'b' , 2 : 'c' ...}

    dataset = [] # 각 비디오 영상에 대한 샘플들 저장.
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i]) # root_path/label/videoname 그냥 폴더를 뜻함.
        if not os.path.exists(video_path):
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames') # n_frames 폴더에 접근 n_frames는 n_frames_ucf101_hmdb51.py로 생성.
        n_frames = int(load_value_file(n_frames_file_path)) # n_frames 는 영상 폴더 안에 있는 이미지 수.
        if n_frames <= 0:
            continue

        begin_t = 1 # 이미지의 시작
        end_t = n_frames # 이미지의 끝
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_names[i].split('/')[1] # 영상 이름.
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[int(annotations[i]['label'])] # calss_to_idx(해당 라벨값) => 해당 라벨의 인덱스 값 반환. hi 라벨의 인덱스는 0이면 0반환.
        else:
            sample['label'] = -1

        if n_samples_for_each_video == 1: # 이것만 생각 하기.
            sample['frame_indices'] = list(range(1, n_frames + 1)) # num of input frame
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = max(1,
                           math.ceil((n_frames - 1 - sample_duration) /  # sample_duration => input frame
                                     (n_samples_for_each_video - 1)))    # ex)   (50 - 1 - 16) / (3 - 1) = 16.5 ceil => 17 
            else:
                step = sample_duration
            for j in range(1, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                    range(j, min(n_frames + 1, j + sample_duration)))  # rnrksquffh frame dmf sksnsek. 
                dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #7
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_names[i][:-14].split('/')[1]
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        if n_samples_for_each_video == 1:
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = max(1,
                           math.ceil((n_frames - 1 - sample_duration) /
                                     (n_samples_for_each_video - 1)))
            else:
                step = sample_duration
            for j in range(1, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                    range(j, min(n_frames + 1, j + sample_duration)))
                dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #8
0
ファイル: fcvid.py プロジェクト: WendaDeng/ckmn
def make_dataset(root_path, annotation_path, subset):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name
    dataset = []
    #test_file = open('/DATA/disk1/qzb/datasets/FCVID/test_files_' + subset + '.txt', 'w')
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        n_frames_file_path = os.path.join(video_path, 'number_Frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue
        frame_indices_file_path = os.path.join(video_path, 'frames_name')
        frame_indices = load_list_file(frame_indices_file_path)

        sample = {
            'video': video_path,
            'n_frames': n_frames,
            'frame_indices': frame_indices,
            'video_id': video_names[i]
        }
        #ipdb.set_trace()
        class_indexs = annotations[i]['label']
        if not '-' in class_indexs:
            temp_label = np.zeros(len(class_to_idx))
            temp_label[int(class_indexs)] = 1

            sample['label'] = temp_label
        else:
            temp = class_indexs.split('-')
            temp_label = np.zeros(len(class_to_idx))
            temp_label[int(temp[0])] = 1

            #for class_index in temp:
            #    temp_label[int(class_index)] = 1

            sample['label'] = temp_label
        dataset.append(sample)
        #test_file.write(sample['video_id'] + ' ' + class_indexs + '\n')

    #test_file.close()

    return dataset
コード例 #9
0
def make_untrimmed_dataset(root_path, annotation_path, subset,
                           n_samples_for_each_video, sample_duration):
    data = load_annotation_data(annotation_path)
    video_names, _ = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        print("loading2 ...")
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        fps_file_path = os.path.join(video_path, 'fps')
        fps = load_value_file(fps_file_path)

        begin_t = 1
        end_t = get_end_t(video_path)
        n_frames = end_t - begin_t

        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'fps': fps,
            'video_id': video_names[i][2:]
        }

        if n_samples_for_each_video >= 1:
            step = max(
                1,
                math.ceil((n_frames - 1 - sample_duration) /
                          (n_samples_for_each_video - 1)))
        else:
            step = sample_duration
        for j in range(begin_t, end_t, step):
            sample_j = copy.deepcopy(sample)
            frame_indices = list(range(j, j + sample_duration))
            frame_indices = modify_frame_indices(sample_j['video'],
                                                 frame_indices)
            if len(frame_indices) < 16:
                continue
            sample_j['frame_indices'] = frame_indices
            dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #10
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in tqdm(range(len(video_names))):

        video_name = video_names[i].split('___')[0]
        video_path = os.path.join(root_path, video_name)
        assert os.path.exists(video_path), f"File {video_path} does not exist !"

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        assert n_frames > 0

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_name # TODO check usage of video_id 
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        if n_samples_for_each_video == 1:
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = max(1,
                           math.ceil((n_frames - 1 - sample_duration) /
                                     (n_samples_for_each_video - 1)))
            else:
                step = sample_duration
            for j in range(1, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                    range(j, min(n_frames + 1, j + sample_duration)))
                dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #11
0
def make_untrimmed_dataset(root_path, annotation_path, subset,
                           n_samples_for_each_video, sample_duration):
    data = load_annotation_data(annotation_path)
    video_names, _ = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        fps_file_path = os.path.join(video_path, 'fps')
        fps = load_value_file(fps_file_path)

        begin_t = 1
        end_t = get_end_t(video_path)
        n_frames = end_t - begin_t

        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'fps': fps,
            'video_id': video_names[i][2:]
        }

        if n_samples_for_each_video >= 1:
            step = max(1,
                       math.ceil((n_frames - 1 - sample_duration) /
                                 (n_samples_for_each_video - 1)))
        else:
            step = sample_duration
        for j in range(begin_t, end_t, step):
            sample_j = copy.deepcopy(sample)
            frame_indices = list(range(j, j + sample_duration))
            frame_indices = modify_frame_indices(sample_j['video'],
                                                 frame_indices)
            if len(frame_indices) < 16:
                continue
            sample_j['frame_indices'] = frame_indices
            dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #12
0
    def make_data_set(
            self,
            paths: dict,
            annotation_path: str,
            subset: str
    ):

        # アノテーションファイルからjsonやcsvオブジェクトを取得する
        entry = self.load_annotation_data(annotation_path)
        # 動画の名前とその属するクラスのそれぞれのリストを取得
        video_names, annotations = self.get_video_names_and_annotations(entry, subset)
        # クラスをidへ割り振る
        class_to_idx = self.get_class_labels(entry)
        # idからクラスがわかるようにする
        idx_to_class = {}
        for name, label in class_to_idx.items():
            idx_to_class[label] = name

        video_information = []

        for i in range(len(video_names)):

            # 1000毎に経過報告をする
            if i % 1000 == 0:
                print('data_set loading [{}/{}]'.format(i, len(video_names)))

            full_paths = {}
            n_frames = 0

            for path in paths:
                full_path = os.path.join(path, video_names[i])
                assert os.path.exists(full_path), 'No such file :{}'.format(full_path)
                full_paths[full_path] = paths[path]
                n_frames_file_path = os.path.join(full_path, 'n_frames')
                if os.path.exists(n_frames_file_path):
                    n_frames = int(load_value_file(n_frames_file_path))
            assert n_frames > 0

            video_info = {
                'paths': full_paths,
                'n_frames': n_frames,
                'video_id': video_names[i].split('/')[1],
                'label': class_to_idx[annotations[i]['label']],
                'frame_indices': list(range(1, n_frames + 1))
            }

            video_information.append(video_info)

        return video_information, idx_to_class
コード例 #13
0
def _make_dataset(i, root_path, video_names, annotations, class_to_idx,
                  n_samples_for_each_video, sample_duration):
    dataset = []
    if i % 1000 == 0:
        print('dataset loading [{}/{}]'.format(i, len(video_names)))

    video_path = os.path.join(root_path, video_names[i])
    if not os.path.exists(video_path):
        return dataset

    n_frames_file_path = os.path.join(video_path, 'n_frames')
    n_frames = int(load_value_file(n_frames_file_path))
    if n_frames <= 0:
        return dataset

    begin_t = 1
    end_t = n_frames
    sample = {
        'video': video_path,
        'segment': [begin_t, end_t],
        'n_frames': n_frames,
        'video_id': video_names[i].split('/')[0]
    }
    if len(annotations) != 0:
        sample['label'] = class_to_idx[annotations[i]['label']]
    else:
        sample['label'] = -1

    if n_samples_for_each_video == 1:
        sample['frame_indices'] = list(range(1, n_frames + 1))
        dataset.append(sample)
    else:
        if n_samples_for_each_video > 1:
            step = max(
                1,
                math.ceil((n_frames - 1 - sample_duration) /
                          (n_samples_for_each_video - 1)))
        else:
            step = sample_duration
        for j in range(1, n_frames, step):
            sample_j = copy.deepcopy(sample)
            sample_j['frame_indices'] = list(
                range(j, min(n_frames + 1, j + sample_duration)))
            dataset.append(sample_j)
    return dataset
コード例 #14
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    ##load the json file as data to read labels and id of an arbitrary video
    data = load_annotation_data(annotation_path)
    ##return a file that contains video names in the format of id/label and single list "annotation" of its labels
    video_names = get_video_names_and_annotations(data, subset)
    #give index to every category in kinetics-400
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    i = 0
    dataset = []
    for key, label in range(video_names):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, label, key)
        if not os.path.exists(video_path):
            print("cannot find" + label + key)
        ##get the count of frames of the video
        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))

        if n_frames <= 0:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_names[i][:-14],
            'label': class_to_idx[label]
        }

        sample['frame_indices'] = list(range(1, n_frames + 1))
        dataset.append(sample)

    return dataset, idx_to_class
コード例 #15
0
def make_dataset(video_names, labels, n_samples_for_each_video):

    dataset = []
    for i in range(len(video_names)):

        video_path = video_names[i]
        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'frame_indices': list(range(begin_t, end_t + 1)),
            'label': labels[i]
        }
        for j in range(n_samples_for_each_video):
            sample_j = copy.deepcopy(sample)
            dataset.append(sample_j)

    return dataset
コード例 #16
0
def make_dataset(yfcc_root, yfcc_results, target_classes,
                 n_samples_for_each_video, topk):
    dataset = []
    res = pd.read_pickle(yfcc_results)
    video_list = []
    label_list = []
    count = 0
    for i, c in enumerate(target_classes):

        video_list.extend(res[c][:topk])
        #print(res['segment'][c])
        label_list.extend([i] * topk)

    for i in range(len(video_list)):
        video_path = os.path.join(yfcc_root, video_list[i][:-4])
        if not os.path.exists(video_path):
            print("%s does not exist!!!!" % video_path)
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames == 0:
            print("%s n_frames=0!!!!" % video_path)
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'frame_indices': list(range(begin_t, end_t + 1)),
            'label': label_list[i]
        }
        for j in range(n_samples_for_each_video):
            sample_j = copy.deepcopy(sample)
            dataset.append(sample_j)

        count = count + 1

    print('Load %d yfcc videos' % (count))
    return dataset
コード例 #17
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    # 生成数据列表,列表中的元素为{'video':video_path, 'segment':[begin_t, end_t],\
    # 'n_frames':n_frames, 'video_id':video_names, 'label':, 'frame_indices'}
    # 其中frmae_indices表示所选取的frame的索引值。
    # sample_duration: 采样的间隔
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_names[i].split('/')[1]
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        if n_samples_for_each_video == 1:
            # 表示的意思应该是选取视频中所有帧的样本
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:

                step = max(
                    1,
                    math.ceil((n_frames - 1 - sample_duration) /
                              (n_samples_for_each_video - 1)))
            else:
                step = sample_duration
            # because of optical flow, we modify the beginning is 2.
            for j in range(2, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                    range(j, min(n_frames + 1, j + sample_duration)))
                dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #18
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    '''
    dst_data:
    ---|labels: all labels
    ---|database: contains train_database and val_database.

    database:
    ---|key: avi_video_name
        ---|subset: training or validation
        ---|annotations: 
            ---|label: class_name
    '''
    # loading json
    data = load_annotation_data(annotation_path)
    # video_names is {label}/{video_name}, annotations is dict {'label', label}
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    # dataset, list, contains N samples, and eav
    # sample
    # ---|video: the path of video contains a lot of images
    # ---|segment: [1, n_frames]
    # ---|n_frames: number of frames
    # ---|video_id: avi_name
    # ---|label: class_id
    # ---|frame_indices: the indices of frames used in model
    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        # the image in video_path is a single frame of the video.
        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        # n_frames_file_path saves the number of frames in this video.
        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id':
            video_names[i].split('/')[1]  # video_name, and [0] is class_name
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        if n_samples_for_each_video == 1:
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = max(
                    1,
                    math.ceil((n_frames - 1 - sample_duration) /
                              (n_samples_for_each_video - 1)))
            else:
                step = sample_duration
            for j in range(2, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                    range(j, min(n_frames + 1, j + sample_duration)))
                dataset.append(sample_j)
    # idx_to_class: indice to class name.
    return dataset, idx_to_class
コード例 #19
0
def make_dataset(root_path,
                 annotation_path,
                 subset,
                 n_samples_for_each_video,
                 sample_duration,
                 debug=True):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name
    dataset = []
    debug_len = len(video_names)
    if debug:
        debug_len = 500
    for i in tqdm(range(debug_len)):  # 所有数据集
        # for i in range(500):  # 使用1000个作为测试
        # if i % 1000 == 0:
        #     print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_names[i].split('/')[1]
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        if n_samples_for_each_video == 1:
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = int(
                    max(
                        1,
                        math.ceil((n_frames - 1 - sample_duration) /
                                  (n_samples_for_each_video - 1))))
            else:
                step = int(sample_duration)
            for j in range(1, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                    range(j, min(n_frames + 1, j + sample_duration)))
                dataset.append(sample_j)
    # print('video_names.size-{}:'.format(subset), len(dataset))
    # print(dataset[0])
    # print(idx_to_class)
    return dataset, idx_to_class
def make_dataset(opt, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):


    
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name
    
    dataset = []
    total_number_of_clips = 0
    gflop_per_clip = 8.5
    for i in range(len(video_names)):
        #video_path = os.path.join(opt.video_path, video_names[i])+ ".mp4"
        video_path = os.path.join(opt.video_path,video_names[i]) + ".mp4"
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))
        j_path  = os.path.join(opt.jpeg_path, video_names[i]) 
        n_frames_file_path = os.path.join(j_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        
        if n_frames <= 0:
            continue

        
        
        i_path = os.path.join(opt.iframe_path, video_names[i]) 
        
        m_path = os.path.join(opt.mv_path, video_names[i]) 
        r_path = os.path.join(opt.residual_path, video_names[i]) 
        
        if not os.path.exists(opt.jpeg_path):    
            continue
        
        begin_t = 1
        end_t = n_frames
        
        sample = {
            'video'    : video_path,
            'jpeg_path': j_path,
            'iframe_path': i_path,
            'mv_path': m_path,
            'residual_path': r_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_names[i].split('/')[1]
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1
        #dataset.append(sample)
        
        
        if n_samples_for_each_video == 1:
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = max(1,
                           math.ceil((n_frames - 1 - sample_duration) /
                                     (n_samples_for_each_video - 1)))
            else:###teesting
                if  subset == 'training':
                    step = int(sample_duration/1)
                else:
                    step = int(sample_duration/2)
            for j in range(0, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                        range(j, min(n_frames + 1, j + sample_duration))) 
                dataset.append(sample_j)
                total_number_of_clips += 1

    if n_samples_for_each_video == 0:
        num_of_videos = len(video_names)
        avg_clips_per_video = round(total_number_of_clips/num_of_videos,2)
        tot_gflops=round(gflop_per_clip*avg_clips_per_video,2)
        print("Number of videos:",num_of_videos)
        print("Number of clips:",total_number_of_clips)
        print("Avarage amount of clips per video:",avg_clips_per_video)
        print("Number of GFlos for each video in avarage will be,(true to mfnet only):",tot_gflops)
    return dataset, idx_to_class
コード例 #21
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    if os.path.exists(os.path.join(os.path.dirname(annotation_path), 'cache', 'dataset_{}.json'.format(subset))):
        with open(os.path.join(os.path.dirname(annotation_path), 'cache', 'dataset_{}.json'.format(subset)), 'r') as f:
            dataset = json.load(f)
    else:
        dataset = []
        for i in range(len(video_names)):

            if subset == 'training':
                video_path = os.path.join(root_path, 'train', video_names[i])
            else:
                video_path = os.path.join(root_path, 'val', video_names[i])
            if not os.path.exists(video_path):
                continue

            if i % 1000 == 0:
                print('dataset loading [{}/{}]'.format(i, len(video_names)))

            n_frames_file_path = os.path.join(video_path, 'n_frames')
            n_frames = int(load_value_file(n_frames_file_path))
            if n_frames <= 0:
                continue

            begin_t = 1
            end_t = n_frames
            sample = {
                'video': video_path,
                'segment': [begin_t, end_t],
                'n_frames': n_frames,
                'video_id': video_names[i][:-14].split('/')[1]
            }
            if len(annotations) != 0:
                sample['label'] = class_to_idx[annotations[i]['label']]
            else:
                sample['label'] = -1

            if n_samples_for_each_video == 1:
                sample['frame_indices'] = list(range(1, n_frames + 1))
                dataset.append(sample)
            else:
                if n_samples_for_each_video > 1:
                    step = max(1,
                               math.ceil((n_frames - 1 - sample_duration) /
                                         (n_samples_for_each_video - 1)))
                else:
                    step = int(sample_duration / 2)
                for j in range(1, n_frames, step):
                    sample_j = copy.deepcopy(sample)
                    sample_j['frame_indices'] = list(
                        range(j, min(n_frames + 1, j + sample_duration)))
                    dataset.append(sample_j)

        if not os.path.exists(os.path.join(os.path.dirname(annotation_path), 'cache')):
            os.makedirs(os.path.join(os.path.dirname(annotation_path), 'cache'))
        with open(os.path.join(os.path.dirname(annotation_path), 'cache', 'dataset_{}.json'.format(subset)), 'w') as f:
            json.dump(dataset, f)

    return dataset, idx_to_class
コード例 #22
0
def make_dataset2(root_path, annotation_path, subset, n_samples_for_each_video,
                  sample_duration):
    import pickle
    cache_path = os.path.join(
        root_path, '../cache',
        '%s-%s-%s-%s.pkl' % (os.path.basename(annotation_path).replace(
            '.json', ''), subset, n_samples_for_each_video, sample_duration))

    if os.path.isfile(cache_path):
        print('pickle load from', cache_path)
        with open(cache_path, 'rb') as f:
            cache = pickle.load(f)
        dataset = cache['dataset']
        idx_to_class = cache['idx_to_class']
    else:
        print('pickle dump to', cache_path)

        data = load_annotation_data(annotation_path)
        video_names, annotations = get_video_names_and_annotations(
            data, subset)
        class_to_idx = get_class_labels(data)
        idx_to_class = {}
        for name, label in class_to_idx.items():
            idx_to_class[label] = name

        dataset = []
        for i in range(len(video_names)):
            if i % 1000 == 0:
                print('dataset loading [{}/{}]'.format(i, len(video_names)))

            video_path = os.path.join(root_path, video_names[i])
            if not os.path.exists(video_path):
                continue

            n_frames_file_path = os.path.join(video_path, 'n_frames')
            n_frames = int(load_value_file(n_frames_file_path))
            if n_frames <= 0:
                continue

            begin_t = 1
            end_t = n_frames
            sample = {
                'video': video_path,
                'segment': [begin_t, end_t],
                'n_frames': n_frames,
                'video_id': video_names[i].split('/')[1]
            }
            if len(annotations) != 0:
                sample['label'] = class_to_idx[annotations[i]['label']]
            else:
                sample['label'] = -1

            if n_samples_for_each_video == 1:
                sample['frame_indices'] = list(range(1, n_frames + 1))
                dataset.append(sample)
            else:
                if n_samples_for_each_video > 1:
                    step = max(
                        1,
                        math.ceil((n_frames - 1 - sample_duration) /
                                  (n_samples_for_each_video - 1)))
                else:
                    step = sample_duration
                for j in range(1, n_frames, step):
                    sample_j = copy.deepcopy(sample)
                    sample_j['frame_indices'] = list(
                        range(j, min(n_frames + 1, j + sample_duration)))
                    dataset.append(sample_j)

        cache = {
            'dataset': dataset,
            'idx_to_class': idx_to_class,
        }
        with open(cache_path, 'wb') as f:
            pickle.dump(cache, f, protocol=pickle.HIGHEST_PROTOCOL)
    return dataset, idx_to_class
コード例 #23
0
def make_untrimmed_dataset(root_path, scores_dump_path, annotation_path, subset,
                           n_samples_for_each_video, window_size, window_stride):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    videos = {}
    for i in range(len(video_names)):
        if i != 0 and i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))
            # break # early exit

        annotation = annotations[i]
        label = int(annotation['label'])
        begin_t = annotation['start_frame']
        end_t = annotation['end_frame']
        clip = {
            'label': label,
            'segment': [begin_t, end_t],
            'video_id': video_names[i]
        }
        video = get_video_from_clip(video_names[i])
        if not video in videos:
            videos[video] = []

        videos[video].append(clip)

    i = 0
    # dump_dir = os.path.join(root_path, scores_dump_path)
    for video in videos:
        video_path = os.path.join(root_path, video)
        if not os.path.exists(video_path) or os.path.exists(scores_dump_path + "/" + video):
            print("Skipping video ", video_path, scores_dump_path)
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue

        window_start = 1
        window_end = window_start + window_size
        idx = 1
        while window_end < n_frames:
            sample = {
                'video': video_path,
                'segment': [window_start, window_end],
                'video_id': video,
                'window_id': idx}
            frame_indices = list(range(window_start, window_end))
            frame_indices = modify_frame_indices(
                sample['video'], frame_indices)
            sample['frame_indices'] = frame_indices
            # sample['label'] = -1  # Not computed yet
            sample['label'] = get_untrimmed_label(
                videos[video], window_start, window_end)
            if len(frame_indices) == window_size:
                dataset.append(sample)

            window_start += window_stride
            window_end = window_start + window_size
            idx += 1
        if i % 10 == 0:
            print('dataset loading [{}/{}]'.format(i, len(videos)))
        i += 1

    print("Make untrimmed dataset")
    return dataset, idx_to_class
コード例 #24
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration, sample_stride):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_names[i].split('/')[1],
            'frame_indices': []
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        clip_length = sample_duration * sample_stride
        # print('='*80)
        if n_samples_for_each_video <= 0:
            n_samples_for_cur_video = math.ceil(
                n_frames / clip_length)  # sample times for current video
        else:
            n_samples_for_cur_video = n_samples_for_each_video

        if n_samples_for_cur_video == 1:
            step = n_frames
        else:
            step = max(1, (n_frames - clip_length) /
                       (n_samples_for_cur_video - 1))

        for i in range(n_samples_for_cur_video):
            sample_i = copy.deepcopy(sample)
            if step < clip_length:
                random_offset = random.randint(0, sample_stride - 1)
            else:
                random_offset = random.randint(
                    0, math.floor(step - clip_length + sample_stride - 1))

            start_frame = math.floor(i * step + random_offset)
            for j in range(sample_duration):
                sample_i['frame_indices'].append(start_frame % n_frames + 1)
                start_frame += sample_stride
            dataset.append(sample_i)
            # print('sample:', video_path, n_frames, sample_i['frame_indices'][0], len(sample_i['frame_indices']) )
    print('total samples:', len(dataset))
    return dataset, idx_to_class
コード例 #25
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name
    class_map_save(class_to_idx)
    # deb_image_loader = get_default_image_loader()    ## debug  ######################

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 80:
            print('Skipping too short video {}'.format(video_path))
            continue
        if n_frames > 300:
            print('Skipping too long video {}'.format(video_path))
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
#            'video_id': video_names[i][:-14].split('/')[1]
            'video_id': video_names[i].split('/')[1]
        }
        ## debug begin ##############################
        # print(video_path)
        # video_loader(video_path,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],deb_image_loader)
        # print(".")
        ## debug end ##########################

        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        if n_samples_for_each_video == 1:
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = max(1,
                           math.ceil((n_frames - 1 - sample_duration) /
                                     (n_samples_for_each_video - 1)))
            else:
                step = sample_duration
            for j in range(1, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                    range(j, min(n_frames + 1, j + sample_duration)))
                dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #26
0
ファイル: activitynet.py プロジェクト: qingquansong/CSCE689
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        fps_file_path = os.path.join(video_path, 'fps')
        fps = load_value_file(fps_file_path)

#         if subset == 'testing':
#             print(annotations)
        for kk, vv in annotations[i].items():
            for annotation in vv:
#                 print(annotation)
#                 print(fps)
                begin_t = math.ceil(annotation[0] * fps)
                end_t = math.ceil(annotation[1] * fps)
                if begin_t == 0:
                    begin_t = 1
                n_frames = end_t - begin_t

                sample = {
                    'video': video_path,
                    'segment': [begin_t, end_t],
                    'fps': fps,
                    'video_id': video_names[i][2:]
                }
    #             if len(annotations) != 0:
    #                 sample['label'] = class_to_idx[annotation['label']]
    #             else:
    #                 sample['label'] = -1
                sample['label'] = class_to_idx[kk]

                if n_samples_for_each_video == 1:
                    frame_indices = list(range(begin_t, end_t))
                    frame_indices = modify_frame_indices(sample['video'],
                                                         frame_indices)
                    if len(frame_indices) < 16:
                        continue
                    sample['frame_indices'] = frame_indices
                    dataset.append(sample)
                else:
                    if n_samples_for_each_video > 1:
                        step = max(1,
                                   math.ceil((n_frames - 1 - sample_duration) /
                                             (n_samples_for_each_video - 1)))
                    else:
                        step = sample_duration
                    for j in range(begin_t, end_t, step):
                        sample_j = copy.deepcopy(sample)
                        frame_indices = list(range(j, j + sample_duration))
                        frame_indices = modify_frame_indices(
                            sample_j['video'], frame_indices)
                        if len(frame_indices) < 16:
                            continue
                        sample_j['frame_indices'] = frame_indices
                        dataset.append(sample_j)

    return dataset, idx_to_class
コード例 #27
0
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration, n_test_clips_for_each_video, n_test_crops_for_each_video):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])
        if not os.path.exists(video_path):
            continue

        n_frames_file_path = os.path.join(video_path, 'n_frames')
        n_frames = int(load_value_file(n_frames_file_path))
        if n_frames <= 0:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            'video_id': video_names[i].split('/')[1]
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        if n_samples_for_each_video == 1:
            # for train and validation
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
#             if n_samples_for_each_video > 1:
#                 step = max(1,
#                            math.ceil((n_frames - 1 - sample_duration) /
#                                      (n_samples_for_each_video - 1)))
#             else:
#                 step = sample_duration
#             for j in range(1, n_frames, step):
#                 sample_j = copy.deepcopy(sample)
#                 sample_j['frame_indices'] = list(
#                     range(j, min(n_frames + 1, j + sample_duration)))
#                 dataset.append(sample_j)
            if n_samples_for_each_video > 1:
                # for validation only
                for j in range(n_samples_for_each_video):
                    sample_j = copy.deepcopy(sample)
                    sample_j['frame_indices'] = list(range(1, n_frames + 1))
                    dataset.append(sample_j)
            else:
                # for test only, option n_val_samples = 0
                for j in range(n_test_clips_for_each_video):
                    for k in range(n_test_crops_for_each_video):
                        step = n_frames / n_test_clips_for_each_video
                        start_index = int(j * step)
                        sample_j = copy.deepcopy(sample)
                        # frame_indices represents the test clip info of the video.
                        # frame_indices = [clip_index, n_test_clips, n_frames], clip_index is start from 0.
                        sample_j['frame_indices'] = [j, n_test_clips_for_each_video, n_frames]
                        # crop_indices represents the test crop info of the video.
                        # crop_indices = [crop_index, n_test_crops], crop_index is start from 0.
                        sample_j["crop_indices"] = [k, n_test_crops_for_each_video]
                        # index of test segment, from 0 to (n_test_clips * n_test_crops - 1).
                        sample_j["test_segment_index"] = j * n_test_crops_for_each_video + k
                        dataset.append(sample_j)

    print("{} videos loaded ...".format(str(len(dataset))))
    return dataset, idx_to_class
コード例 #28
0
ファイル: jester.py プロジェクト: LEChaney/Real-time-SSAR
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
                 sample_duration):
    data = load_annotation_data(annotation_path)
    video_names, annotations = get_video_names_and_annotations(data, subset)
    class_to_idx = get_class_labels(data)
    idx_to_class = {}
    for name, label in class_to_idx.items():
        idx_to_class[label] = name

    dataset = []
    print("[INFO]: Jester Dataset - " + subset + " is loading...")
    for i in range(len(video_names)):
        if i % 1000 == 0:
            print('dataset loading [{}/{}]'.format(i, len(video_names)))

        video_path = os.path.join(root_path, video_names[i])

        if not os.path.exists(video_path):
            continue

        n_frames_file_path = os.path.join(
            video_path,
            'n_frames')  # reads number of farames under each video path
        n_frames = int(load_value_file(n_frames_file_path))
        #         n_frames = len(glob.glob(os.path.join(video_path, '*.jpg'))) # in case there is no n_frames file uncomment this line

        if n_frames <= 0:
            continue

        begin_t = 1
        end_t = n_frames
        sample = {
            'video': video_path,
            'segment': [begin_t, end_t],
            'n_frames': n_frames,
            #'video_id': video_names[i].split('/')[1]
            'video_id': video_names[i]
        }
        if len(annotations) != 0:
            sample['label'] = class_to_idx[annotations[i]['label']]
        else:
            sample['label'] = -1

        if n_samples_for_each_video == 1:
            sample['frame_indices'] = list(range(1, n_frames + 1))
            dataset.append(sample)
        else:
            if n_samples_for_each_video > 1:
                step = max(
                    1,
                    math.ceil((n_frames - 1 - sample_duration) /
                              (n_samples_for_each_video - 1)))
            else:
                step = sample_duration
            for j in range(1, n_frames, step):
                sample_j = copy.deepcopy(sample)
                sample_j['frame_indices'] = list(
                    range(j, min(n_frames + 1, j + sample_duration)))
                dataset.append(sample_j)

    return dataset, idx_to_class