コード例 #1
0
ファイル: markovchain.py プロジェクト: thomlake/collapsed
 def marginal_likelihood(self, log=True, normalize=True):
     lp = logmvbeta(self.initial_counts) + logmvbeta(self.transition_counts)
     if normalize:
         lp -= (logmvbeta(self.initial_alpha) + logmvbeta(self.transition_alpha))
     return lp if log else np.exp(lp)
コード例 #2
0
ファイル: mixture.py プロジェクト: thomlake/collapsed
 def marginal_likelihood(self, log=True, normalize=True):
     lf1 = logmvbeta(self.counts)
     if normalize:
         lf1 -= logmvbeta(self.alpha)
     lf2 = sum(component.marginal_likelihood(log=True, normalize=normalize) for component in self.components)
     return lf1 + lf2 if log else np.exp(lf1 + lf2)