コード例 #1
0
def loadAnnotFile(genome, skip_cache=False):
    """
    load in the annotation and create a geneDict and transcription collection
    """
    genomeDict = {
        'HG18': 'annotation/hg18_refseq.ucsc',
        'MM9': 'annotation/mm9_refseq.ucsc',
        'MM10': 'annotation/mm10_refseq.ucsc',
        'hg18': 'annotation/hg18_refseq.ucsc',
        'mm9': 'annotation/mm9_refseq.ucsc',
        'HG19': 'annotation/hg19_refseq.ucsc',
        'hg19': 'annotation/hg19_refseq.ucsc',
        'hg19_ribo': 'annotation/hg19_refseq.ucsc',
        'HG19_RIBO': 'annotation/hg19_refseq.ucsc',
        'rn4': 'annotation/rn4_refseq.ucsc',
        'RN4': 'annotation/rn4_refseq.ucsc',
    }

    annotFile = whereAmI + '/' + genomeDict[genome]

    if not skip_cache:
        # Try loading from a cache, if the crc32 matches
        annotPathHash = zlib.crc32(
            annotFile) & 0xFFFFFFFF  # hash the entire location of this script
        annotFileHash = zlib.crc32(open(annotFile, "rb").read()) & 0xFFFFFFFF

        cache_file_name = "%s.%s.%s.cache" % (genome, annotPathHash,
                                              annotFileHash)

        cache_file_path = '%s/%s' % (tempfile.gettempdir(), cache_file_name)

        if os.path.isfile(cache_file_path):
            # Cache exists! Load it!
            try:
                print('\tLoading genome data from cache.')
                with open(cache_file_path, 'rb') as cache_fh:
                    cached_data = cPickle.load(cache_fh)
                    print('\tCache loaded.')
                return cached_data
            except (IOError, cPickle.UnpicklingError):
                # Pickle corrupt? Let's get rid of it.
                print('\tWARNING: Cache corrupt or unreadable. Ignoring.')
        else:
            print('\tNo cache exists: Loading annotation (slow).')

    # We're still here, so either caching was disabled, or the cache doesn't exist

    # geneList =['NM_002460','NM_020185']
    geneList = []
    geneDict = utils.makeGenes(annotFile, geneList, True)
    txCollection = utils.makeTranscriptCollection(annotFile, 0, 0, 500,
                                                  geneList)

    if not skip_cache:
        print('Writing cache for the first time.')
        with open(cache_file_path, 'wb') as cache_fh:
            cPickle.dump((geneDict, txCollection), cache_fh,
                         cPickle.HIGHEST_PROTOCOL)

    return geneDict, txCollection
コード例 #2
0
def loadAnnotFile(genome, skip_cache=False):
    """
    load in the annotation and create a geneDict and transcription collection
    """
    genomeDict = {
        'HG18': 'annotation/hg18_refseq.ucsc',
        'MM9': 'annotation/mm9_refseq.ucsc',
        'MM10': 'annotation/mm10_refseq.ucsc',
        'hg18': 'annotation/hg18_refseq.ucsc',
        'mm9': 'annotation/mm9_refseq.ucsc',
        'HG19': 'annotation/hg19_refseq.ucsc',
        'hg19': 'annotation/hg19_refseq.ucsc',
        'hg19_ribo': 'annotation/hg19_refseq.ucsc',
        'HG19_RIBO': 'annotation/hg19_refseq.ucsc',
        'rn4': 'annotation/rn4_refseq.ucsc',
        'RN4': 'annotation/rn4_refseq.ucsc',
        }

    annotFile = whereAmI + '/' + genomeDict[genome]


    if not skip_cache:
        # Try loading from a cache, if the crc32 matches
        annotPathHash = zlib.crc32(annotFile) & 0xFFFFFFFF  # hash the entire location of this script
        annotFileHash = zlib.crc32(open(annotFile, "rb").read()) & 0xFFFFFFFF

        cache_file_name = "%s.%s.%s.cache" % (genome, annotPathHash, annotFileHash)

        cache_file_path = '%s/%s' % (tempfile.gettempdir(), cache_file_name)

        if os.path.isfile(cache_file_path):
            # Cache exists! Load it!
            try:
                print('\tLoading genome data from cache.')
                with open(cache_file_path, 'rb') as cache_fh:
                    cached_data = cPickle.load(cache_fh)
                    print('\tCache loaded.')
                return cached_data
            except (IOError, cPickle.UnpicklingError):
                # Pickle corrupt? Let's get rid of it.
                print('\tWARNING: Cache corrupt or unreadable. Ignoring.')
        else:
            print('\tNo cache exists: Loading annotation (slow).')


    # We're still here, so either caching was disabled, or the cache doesn't exist

    # geneList =['NM_002460','NM_020185']
    geneList = []
    geneDict = utils.makeGenes(annotFile, geneList, True)
    txCollection = utils.makeTranscriptCollection(annotFile, 0, 0, 500, geneList)

    if not skip_cache:
        print('Writing cache for the first time.')
        with open(cache_file_path, 'wb') as cache_fh:
            cPickle.dump((geneDict, txCollection), cache_fh, cPickle.HIGHEST_PROTOCOL)

    return geneDict, txCollection
コード例 #3
0
ファイル: bamPlot_turbo.py プロジェクト: afederation/pipeline
def loadAnnotFile(genome):
    '''
    load in the annotation and create a geneDict and transcription collection
    '''
    genomeDict = {
        'HG18': './annotation/hg18_refseq.ucsc',
        'MM9': './annotation/mm9_refseq.ucsc',
        'hg18': './annotation/hg18_refseq.ucsc',
        'mm9': './annotation/mm9_refseq.ucsc',
        'HG19': './annotation/hg19_refseq.ucsc',
        'hg19': './annotation/hg19_refseq.ucsc'
    }

    annotFile = whereAmI + '/' + genomeDict[genome]
    # geneList =['NM_002460','NM_020185']
    geneList = []
    geneDict = utils.makeGenes(annotFile, geneList, True)
    txCollection = utils.makeTranscriptCollection(annotFile, 0, 0, 500, geneList)

    return geneDict, txCollection
コード例 #4
0
def mapEnhancerToGene(annotFile,enhancerFile,transcribedFile='',uniqueGenes=True,searchWindow =50000,noFormatTable = False):
    
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerTable = utils.parseTable(enhancerFile,'\t')

    #internal parameter for debugging
    byRefseq = False


    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile,'\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(annotFile,0,0,500,transcribedGenes)


    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID,startDict,0,0))


    #this turns the tssLoci list into a LocusCollection
    #50 is the internal parameter for LocusCollection and doesn't really matter
    tssCollection = utils.LocusCollection(tssLoci,50)

    

    geneDict = {'overlapping':defaultdict(list),'proximal':defaultdict(list)}

    #dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict= defaultdict(list)

    #list of all genes that appear in this analysis
    overallGeneList = []

    if noFormatTable:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE']]

        
    else:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0][0:9]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE'] + enhancerTable[5][-2:]]

        #next by gene
        geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS']]

    #next make the gene to enhancer table
    geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS','ENHANCER_RANKS','IS_SUPER']]

        


    for line in enhancerTable:
        if line[0][0] =='#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1],line[2],line[3])
        
        enhancerLocus = utils.Locus(line[1],line[2],line[3],'.',line[0])

        #overlapping genes are transcribed genes whose transcript is directly in the stitchedLocus         
        overlappingLoci = transcribedCollection.getOverlap(enhancerLocus,'both')           
        overlappingGenes =[]
        for overlapLocus in overlappingLoci:                
            overlappingGenes.append(overlapLocus.ID())

        #proximalGenes are transcribed genes where the tss is within 50kb of the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,searchWindow,searchWindow),'both')           
        proximalGenes =[]
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())


        distalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,1000000,1000000),'both')           
        distalGenes =[]
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

            
            
        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        #these checks make sure each gene list is unique.
        #technically it is possible for a gene to be overlapping, but not proximal since the
        #gene could be longer than the 50kb window, but we'll let that slide here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)


        #Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            #get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3]))/2

            #get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0]) for geneID in allEnhancerGenes]
            #get the ID and convert to name
            closestGene = startDict[allEnhancerGenes[distList.index(min(distList))]]['name']

        #NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        #Now grab all overlapping and proximal genes for the gene ordered table

        overallGeneList +=overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))
            
        overallGeneList+=proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))



    #End loop through
    
    #Make table by gene
    overallGeneList = utils.uniquify(overallGeneList)  

    #use enhancer rank to order
    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])
        
    usedNames = []
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:

            continue
        else:
            usedNames.append(geneName)
        
        proxEnhancers = geneDict['overlapping'][refID]+geneDict['proximal'][refID]
        
        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]],',')
    
        newLine = [geneName,refID,join(proxEnhancers,','),enhancerRanks,superStatus]
        geneToEnhancerTable.append(newLine)

    #resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable,geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2]) for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i+1)])

        return sortedTable,geneToEnhancerTable
コード例 #5
0
def mapEnhancerToGeneTop(rankByBamFile, controlBamFile, genome, annotFile, enhancerFile, transcribedFile='', uniqueGenes=True, searchWindow=50000, noFormatTable=False):
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerName = enhancerFile.split('/')[-1].split('.')[0]
    enhancerTable = utils.parseTable(enhancerFile, '\t')

    # internal parameter for debugging
    byRefseq = False

    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile, '\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(
        annotFile, 0, 0, 500, transcribedGenes)

    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID, startDict, 0, 0))

    # this turns the tssLoci list into a LocusCollection
    # 50 is the internal parameter for LocusCollection and doesn't really
    # matter
    tssCollection = utils.LocusCollection(tssLoci, 50)

    geneDict = {'overlapping': defaultdict(
        list), 'proximal': defaultdict(list)}

    # dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict = defaultdict(list)

    # list of all genes that appear in this analysis
    overallGeneList = []

    # find the damn header
    for line in enhancerTable:
        if line[0][0] == '#':
            continue
        else:
            header = line
            break

    if noFormatTable:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE']]

    else:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header[0:9] + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE'] + header[-2:]]

        # next by gene
        geneToEnhancerTable = [
            ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS']]

    # next make the gene to enhancer table
    geneToEnhancerTable = [
        ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS', 'ENHANCER_RANKS', 'IS_SUPER', 'ENHANCER_SIGNAL']]

    for line in enhancerTable:
        if line[0][0] == '#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1], line[2], line[3])

        enhancerLocus = utils.Locus(line[1], line[2], line[3], '.', line[0])

        # overlapping genes are transcribed genes whose transcript is directly
        # in the stitchedLocus
        overlappingLoci = transcribedCollection.getOverlap(
            enhancerLocus, 'both')
        overlappingGenes = []
        for overlapLocus in overlappingLoci:
            overlappingGenes.append(overlapLocus.ID())

        # proximalGenes are transcribed genes where the tss is within 50kb of
        # the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, searchWindow, searchWindow), 'both')
        proximalGenes = []
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())

        distalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, 1000000, 1000000), 'both')
        distalGenes = []
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        # these checks make sure each gene list is unique.
        # technically it is possible for a gene to be overlapping, but not proximal since the
        # gene could be longer than the 50kb window, but we'll let that slide
        # here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)

        # Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            # get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3])) / 2

            # get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0])
                        for geneID in allEnhancerGenes]
            # get the ID and convert to name
            closestGene = startDict[
                allEnhancerGenes[distList.index(min(distList))]]['name']

        # NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        # Now grab all overlapping and proximal genes for the gene ordered
        # table

        overallGeneList += overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

        overallGeneList += proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

    # End loop through
    # Make table by gene
    print('MAKING ENHANCER ASSOCIATED GENE TSS COLLECTION')
    overallGeneList = utils.uniquify(overallGeneList)

    enhancerGeneCollection = utils.makeTranscriptCollection(
        annotFile, 5000, 5000, 500, overallGeneList)

    enhancerGeneGFF = utils.locusCollectionToGFF(enhancerGeneCollection)

    # dump the gff to file
    enhancerFolder = utils.getParentFolder(enhancerFile)
    gffRootName = "%s_TSS_ENHANCER_GENES_-5000_+5000" % (genome)
    enhancerGeneGFFFile = "%s%s_%s.gff" % (enhancerFolder, enhancerName,gffRootName)
    utils.unParseTable(enhancerGeneGFF, enhancerGeneGFFFile, '\t')

    # now we need to run bamToGFF

    # Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.
    bamliquidator_path = '/ark/home/jdm/pipeline/bamliquidator_batch.py'
    if not os.path.isfile(bamliquidator_path):
        bamliquidator_path = 'bamliquidator_batch.py'
        if not os.path.isfile(bamliquidator_path):
            raise ValueError('bamliquidator_batch.py not found in path')

    print('MAPPING SIGNAL AT ENHANCER ASSOCIATED GENE TSS')
    # map density at genes in the +/- 5kb tss region
    # first on the rankBy bam
    bamName = rankByBamFile.split('/')[-1]
    mappedRankByFolder = "%s%s_%s_%s/" % (enhancerFolder, enhancerName,gffRootName, bamName)
    mappedRankByFile = "%s%s_%s_%s/matrix.gff" % (enhancerFolder,enhancerName, gffRootName, bamName)
    cmd = 'python ' + bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedRankByFolder,rankByBamFile)
    print("Mapping rankby bam %s" % (rankByBamFile))
    print(cmd)

    outputRank = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
    outputRank = outputRank.communicate()
    if len(outputRank[0]) > 0:  # test if mapping worked correctly
        print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
    else:
        print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
        sys.exit()

    # next on the control bam if it exists
    if len(controlBamFile) > 0:
        controlName = controlBamFile.split('/')[-1]
        mappedControlFolder = "%s%s_%s_%s/" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        mappedControlFile = "%s%s_%s_%s/matrix.gff" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        cmd = 'python ' + bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedControlFolder,controlBamFile)
        print("Mapping control bam %s" % (controlBamFile))
        print(cmd)
        outputControl = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
        outputControl = outputControl.communicate()
        if len(outputControl[0]) > 0:  # test if mapping worked correctly
            print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
        else:
            print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
            sys.exit()

    # now get the appropriate output files
    if len(controlBamFile) > 0:
        print("CHECKING FOR MAPPED OUTPUT AT %s AND %s" %
              (mappedRankByFile, mappedControlFile))
        if utils.checkOutput(mappedRankByFile, 1, 1) and utils.checkOutput(mappedControlFile, 1, 1):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile, mappedControlFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()
    else:
        print("CHECKING FOR MAPPED OUTPUT AT %s" % (mappedRankByFile))
        if utils.checkOutput(mappedRankByFile, 1, 30):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()

    # use enhancer rank to order

    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])

    usedNames = []

    # make a new dict to hold TSS signal by max per geneName
    geneNameSigDict = defaultdict(list)
    print('MAKING GENE TABLE')
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:
            continue
        else:
            usedNames.append(geneName)

        proxEnhancers = geneDict['overlapping'][
            refID] + geneDict['proximal'][refID]

        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]], ',')

        enhancerSignal = signalDict[refID]
        geneNameSigDict[geneName].append(enhancerSignal)

        newLine = [geneName, refID, join(
            proxEnhancers, ','), enhancerRanks, superStatus, enhancerSignal]
        geneToEnhancerTable.append(newLine)
    #utils.unParseTable(geneToEnhancerTable,'/grail/projects/newRose/geneMapper/foo.txt','\t')
    print('MAKING ENHANCER TO TOP GENE TABLE')

    if noFormatTable:
        enhancerToTopGeneTable = [
            enhancerToGeneTable[0] + ['TOP_GENE', 'TSS_SIGNAL']]
    else:
        enhancerToTopGeneTable = [enhancerToGeneTable[0][0:12] + [
            'TOP_GENE', 'TSS_SIGNAL'] + enhancerToGeneTable[0][-2:]]

    for line in enhancerToGeneTable[1:]:

        geneList = []
        if noFormatTable:
            geneList += line[-3].split(',')
            geneList += line[-2].split(',')

        else:
            geneList += line[10].split(',')
            geneList += line[11].split(',')

        geneList = utils.uniquify([x for x in geneList if len(x) > 0])
        if len(geneList) > 0:
            try:
                sigVector = [max(geneNameSigDict[x]) for x in geneList]
                maxIndex = sigVector.index(max(sigVector))
                maxGene = geneList[maxIndex]
                maxSig = sigVector[maxIndex]
                if maxSig == 0.0:
                    maxGene = 'NONE'
                    maxSig = 'NONE'
            except ValueError:
                if len(geneList) == 1:
                    maxGene = geneList[0]
                    maxSig = 'NONE'    
                else:
                    maxGene = 'NONE'
                    maxSig = 'NONE'    
        else:
            maxGene = 'NONE'
            maxSig = 'NONE'
        if noFormatTable:
            newLine = line + [maxGene, maxSig]
        else:
            newLine = line[0:12] + [maxGene, maxSig] + line[-2:]
        enhancerToTopGeneTable.append(newLine)

    # resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable, enhancerToTopGeneTable, geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2])
                                    for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        sortedTopGeneTable = [enhancerToTopGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i + 1)])
            sortedTopGeneTable.append(enhancerToTopGeneTable[(i + 1)])

        return sortedTable, sortedTopGeneTable, geneToEnhancerTable
コード例 #6
0
def mapEnhancerToGene(annotFile,enhancerFile,transcribedFile='',uniqueGenes=True,searchWindow =50000,noFormatTable = False):
    
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerTable = utils.parseTable(enhancerFile,'\t')

    #internal parameter for debugging
    byRefseq = False


    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile,'\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(annotFile,0,0,500,transcribedGenes)


    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID,startDict,0,0))


    #this turns the tssLoci list into a LocusCollection
    #50 is the internal parameter for LocusCollection and doesn't really matter
    tssCollection = utils.LocusCollection(tssLoci,50)

    

    geneDict = {'overlapping':defaultdict(list),'proximal':defaultdict(list)}

    #dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict= defaultdict(list)

    #list of all genes that appear in this analysis
    overallGeneList = []

    if noFormatTable:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE']]

        
    else:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0][0:9]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE'] + enhancerTable[5][-2:]]

        #next by gene
        geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS']]

    #next make the gene to enhancer table
    geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS','ENHANCER_RANKS','IS_SUPER']]

        


    for line in enhancerTable:
        if line[0][0] =='#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1],line[2],line[3])
        
        enhancerLocus = utils.Locus(line[1],line[2],line[3],'.',line[0])

        #overlapping genes are transcribed genes whose transcript is directly in the stitchedLocus         
        overlappingLoci = transcribedCollection.getOverlap(enhancerLocus,'both')           
        overlappingGenes =[]
        for overlapLocus in overlappingLoci:                
            overlappingGenes.append(overlapLocus.ID())

        #proximalGenes are transcribed genes where the tss is within 50kb of the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,searchWindow,searchWindow),'both')           
        proximalGenes =[]
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())


        distalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,1000000,1000000),'both')           
        distalGenes =[]
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

            
            
        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        #these checks make sure each gene list is unique.
        #technically it is possible for a gene to be overlapping, but not proximal since the
        #gene could be longer than the 50kb window, but we'll let that slide here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)


        #Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            #get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3]))/2

            #get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0]) for geneID in allEnhancerGenes]
            #get the ID and convert to name
            closestGene = startDict[allEnhancerGenes[distList.index(min(distList))]]['name']

        #NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        #Now grab all overlapping and proximal genes for the gene ordered table

        overallGeneList +=overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))
            
        overallGeneList+=proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))



    #End loop through
    
    #Make table by gene
    overallGeneList = utils.uniquify(overallGeneList)  

    #use enhancer rank to order
    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])
        
    usedNames = []
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:

            continue
        else:
            usedNames.append(geneName)
        
        proxEnhancers = geneDict['overlapping'][refID]+geneDict['proximal'][refID]
        
        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]],',')
    
        newLine = [geneName,refID,join(proxEnhancers,','),enhancerRanks,superStatus]
        geneToEnhancerTable.append(newLine)

    #resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable,geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2]) for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i+1)])

        return sortedTable,geneToEnhancerTable
コード例 #7
0
def mapEnhancerToGeneTop(rankByBamFile, controlBamFile, genome, annotFile, enhancerFile, transcribedFile='', uniqueGenes=True, searchWindow=50000, noFormatTable=False):
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerName = enhancerFile.split('/')[-1].split('.')[0]
    enhancerTable = utils.parseTable(enhancerFile, '\t')

    # internal parameter for debugging
    byRefseq = False

    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile, '\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(
        annotFile, 0, 0, 500, transcribedGenes)

    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID, startDict, 0, 0))

    # this turns the tssLoci list into a LocusCollection
    # 50 is the internal parameter for LocusCollection and doesn't really
    # matter
    tssCollection = utils.LocusCollection(tssLoci, 50)

    geneDict = {'overlapping': defaultdict(
        list), 'proximal': defaultdict(list)}

    # dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict = defaultdict(list)

    # list of all genes that appear in this analysis
    overallGeneList = []

    # find the damn header
    for line in enhancerTable:
        if line[0][0] == '#':
            continue
        else:
            header = line
            break

    if noFormatTable:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE']]

    else:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header[0:9] + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE'] + header[-2:]]

        # next by gene
        geneToEnhancerTable = [
            ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS']]

    # next make the gene to enhancer table
    geneToEnhancerTable = [
        ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS', 'ENHANCER_RANKS', 'IS_SUPER', 'ENHANCER_SIGNAL']]

    for line in enhancerTable:
        if line[0][0] == '#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1], line[2], line[3])

        enhancerLocus = utils.Locus(line[1], line[2], line[3], '.', line[0])

        # overlapping genes are transcribed genes whose transcript is directly
        # in the stitchedLocus
        overlappingLoci = transcribedCollection.getOverlap(
            enhancerLocus, 'both')
        overlappingGenes = []
        for overlapLocus in overlappingLoci:
            overlappingGenes.append(overlapLocus.ID())

        # proximalGenes are transcribed genes where the tss is within 50kb of
        # the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, searchWindow, searchWindow), 'both')
        proximalGenes = []
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())

        distalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, 1000000, 1000000), 'both')
        distalGenes = []
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        # these checks make sure each gene list is unique.
        # technically it is possible for a gene to be overlapping, but not proximal since the
        # gene could be longer than the 50kb window, but we'll let that slide
        # here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)

        # Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            # get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3])) / 2

            # get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0])
                        for geneID in allEnhancerGenes]
            # get the ID and convert to name
            closestGene = startDict[
                allEnhancerGenes[distList.index(min(distList))]]['name']

        # NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        # Now grab all overlapping and proximal genes for the gene ordered
        # table

        overallGeneList += overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

        overallGeneList += proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

    # End loop through
    # Make table by gene
    print('MAKING ENHANCER ASSOCIATED GENE TSS COLLECTION')
    overallGeneList = utils.uniquify(overallGeneList)

    #get the chromLists from the various bams here
    cmd = 'samtools idxstats %s' % (rankByBamFile)
    idxStats = subprocess.Popen(cmd,stdout=subprocess.PIPE,shell=True)
    idxStats= idxStats.communicate()
    bamChromList = [line.split('\t')[0] for line in idxStats[0].split('\n')[0:-2]]
    
    if len(controlBamFile) > 0:
        cmd = 'samtools idxstats %s' % (controlBamFile)
        idxStats = subprocess.Popen(cmd,stdout=subprocess.PIPE,shell=True)
        idxStats= idxStats.communicate()
        bamChromListControl = [line.split('\t')[0] for line in idxStats[0].split('\n')[0:-2]]
        bamChromList = [chrom for chrom in bamChromList if bamChromListControl.count(chrom) != 0]



    #now make sure no genes have a bad chrom 
    overallGeneList = [gene for gene in overallGeneList if bamChromList.count(startDict[gene]['chr']) != 0]

    
    #now make an enhancer collection of all transcripts    
    enhancerGeneCollection = utils.makeTranscriptCollection(
        annotFile, 5000, 5000, 500, overallGeneList)

    enhancerGeneGFF = utils.locusCollectionToGFF(enhancerGeneCollection)

    # dump the gff to file
    enhancerFolder = utils.getParentFolder(enhancerFile)
    gffRootName = "%s_TSS_ENHANCER_GENES_-5000_+5000" % (genome)
    enhancerGeneGFFFile = "%s%s_%s.gff" % (enhancerFolder, enhancerName,gffRootName)
    utils.unParseTable(enhancerGeneGFF, enhancerGeneGFFFile, '\t')

    # now we need to run bamToGFF

    # Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.
    bamliquidator_path = 'bamliquidator_batch'


    print('MAPPING SIGNAL AT ENHANCER ASSOCIATED GENE TSS')
    # map density at genes in the +/- 5kb tss region
    # first on the rankBy bam
    bamName = rankByBamFile.split('/')[-1]
    mappedRankByFolder = "%s%s_%s_%s/" % (enhancerFolder, enhancerName,gffRootName, bamName)
    mappedRankByFile = "%s%s_%s_%s/matrix.txt" % (enhancerFolder,enhancerName, gffRootName, bamName)
    cmd = bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedRankByFolder,rankByBamFile)
    print("Mapping rankby bam %s" % (rankByBamFile))
    print(cmd)
    os.system(cmd)

    #check for completion
    if utils.checkOutput(mappedRankByFile,0.2,5):
        print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
    else:
        print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
        sys.exit()

    # next on the control bam if it exists
    if len(controlBamFile) > 0:
        controlName = controlBamFile.split('/')[-1]
        mappedControlFolder = "%s%s_%s_%s/" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        mappedControlFile = "%s%s_%s_%s/matrix.txt" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        cmd = bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedControlFolder,controlBamFile)
        print("Mapping control bam %s" % (controlBamFile))
        print(cmd)
        os.system(cmd)

        #check for completion
        if utils.checkOutput(mappedControlFile,0.2,5):
            print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
        else:
            print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
            sys.exit()

    # now get the appropriate output files
    if len(controlBamFile) > 0:
        print("CHECKING FOR MAPPED OUTPUT AT %s AND %s" %
              (mappedRankByFile, mappedControlFile))
        if utils.checkOutput(mappedRankByFile, 1, 1) and utils.checkOutput(mappedControlFile, 1, 1):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile, mappedControlFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()
    else:
        print("CHECKING FOR MAPPED OUTPUT AT %s" % (mappedRankByFile))
        if utils.checkOutput(mappedRankByFile, 1, 30):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()

    # use enhancer rank to order

    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])

    usedNames = []

    # make a new dict to hold TSS signal by max per geneName
    geneNameSigDict = defaultdict(list)
    print('MAKING GENE TABLE')
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:
            continue
        else:
            usedNames.append(geneName)

        proxEnhancers = geneDict['overlapping'][
            refID] + geneDict['proximal'][refID]

        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]], ',')

        enhancerSignal = signalDict[refID]
        geneNameSigDict[geneName].append(enhancerSignal)

        newLine = [geneName, refID, join(
            proxEnhancers, ','), enhancerRanks, superStatus, enhancerSignal]
        geneToEnhancerTable.append(newLine)
    #utils.unParseTable(geneToEnhancerTable,'/grail/projects/newRose/geneMapper/foo.txt','\t')
    print('MAKING ENHANCER TO TOP GENE TABLE')

    if noFormatTable:
        enhancerToTopGeneTable = [
            enhancerToGeneTable[0] + ['TOP_GENE', 'TSS_SIGNAL']]
    else:
        enhancerToTopGeneTable = [enhancerToGeneTable[0][0:12] + [
            'TOP_GENE', 'TSS_SIGNAL'] + enhancerToGeneTable[0][-2:]]

    for line in enhancerToGeneTable[1:]:

        geneList = []
        if noFormatTable:
            geneList += line[-3].split(',')
            geneList += line[-2].split(',')

        else:
            geneList += line[10].split(',')
            geneList += line[11].split(',')

        geneList = utils.uniquify([x for x in geneList if len(x) > 0])
        if len(geneList) > 0:
            try:
                sigVector = [max(geneNameSigDict[x]) for x in geneList]
                maxIndex = sigVector.index(max(sigVector))
                maxGene = geneList[maxIndex]
                maxSig = sigVector[maxIndex]
                if maxSig == 0.0:
                    maxGene = 'NONE'
                    maxSig = 'NONE'
            except ValueError:
                if len(geneList) == 1:
                    maxGene = geneList[0]
                    maxSig = 'NONE'    
                else:
                    maxGene = 'NONE'
                    maxSig = 'NONE'    
        else:
            maxGene = 'NONE'
            maxSig = 'NONE'
        if noFormatTable:
            newLine = line + [maxGene, maxSig]
        else:
            newLine = line[0:12] + [maxGene, maxSig] + line[-2:]
        enhancerToTopGeneTable.append(newLine)

    # resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable, enhancerToTopGeneTable, geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2])
                                    for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        sortedTopGeneTable = [enhancerToTopGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i + 1)])
            sortedTopGeneTable.append(enhancerToTopGeneTable[(i + 1)])

        return sortedTable, sortedTopGeneTable, geneToEnhancerTable