コード例 #1
0
def combined_plots(n_test,
                   n_top,
                   output_dir,
                   plot_var,
                   n_dims=4,
                   n_constituents=20):
    sample_topo = make_sample(n_constituents,
                              'qcd-topo',
                              'top-topo',
                              n_test,
                              n_top,
                              n_dims,
                              adjust_weights=True)
    sample_UFO = make_sample(n_constituents,
                             'qcd-UFO',
                             'BSM',
                             n_test,
                             n_top,
                             n_dims,
                             adjust_weights=True)
    samples = [sample_UFO, sample_topo]
    plot_distributions(samples,
                       output_dir,
                       plot_var,
                       sig_bins=200,
                       bkg_bins=400,
                       sig_tag='top')
    sys.exit()
コード例 #2
0
        if args.valid_cuts == '': args.valid_cuts = valid_cuts
        else: args.valid_cuts = valid_cuts + '& (' + args.valid_cuts + ')'
    inputs = {'scalars': scalars, 'images': [], 'others': others}
    validation(args.output_dir, args.results_in, args.plotting, args.n_valid,
               data_files, inputs, args.valid_cuts, args.sep_bkg,
               args.runDiffPlots)
elif args.results_in != '':
    print('\nOption --results_in not matching any file --> aborting\n')
if args.results_in != '': sys.exit()

# MODEL CREATION AND MULTI-GPU DISTRIBUTION
n_gpus = min(args.n_gpus,
             len(tf.config.experimental.list_physical_devices('GPU')))
train_batch_size = max(1, n_gpus) * args.batch_size
valid_batch_size = max(1, n_gpus) * max(args.batch_size, int(5e3))
sample = make_sample(data_files[0], [0, 1], input_data, args.n_tracks,
                     args.n_classes)[0]
model = create_model(args.n_classes, sample, args.NN_type, args.FCN_neurons,
                     CNN, args.l2, args.dropout, train_data, n_gpus)

# ARGUMENTS AND VARIABLES SUMMARY
args.scaling = args.scaling == 'ON' and scalars != []
args.t_scaling = args.t_scaling == 'ON' and 'tracks' in scalars + images
if args.NN_type == 'CNN':
    print('\nCNN ARCHITECTURE:')
    for shape in [
            shape for shape in CNN
            if shape in [sample[key].shape[1:] for key in sample]
    ]:
        print(format(str(shape), '>8s') + ':', str(CNN[shape]))
print('\nPROGRAM ARGUMENTS:')
print(tabulate(vars(args).items(), tablefmt='psql'))
コード例 #3
0
                               num_workers=world.workers)
    else:
        data_test = dataloader(mode="test",
                               transform=tran,
                               folder=args.evalFolder)
        data_test = DataLoader(data_test,
                               batch_size=world.batch_size,
                               shuffle=False,
                               num_workers=world.workers)
        print(">EVAL FOLDER:", args.evalFolder)
    if world.verbose:
        print("loaded data")

    # sample data and show configs
    data_sample = data[0]
    img = utils.make_sample(data_sample)
    utils.show_config()

    # initialize model and restore training process
    m = ITrackerModel()
    if world.verbose:
        print("initialized model")
    epoch_before = 0
    best = 1e10
    if world.doLoad:
        saved = utils.load_checkpoint(world.weight_file)
        if saved:
            print('>Loading checkpoint for epoch %05d with loss %.5f ...' %
                  (saved['epoch'], saved['best_prec1']))
            state = saved['state_dict']
            try:
コード例 #4
0
from keras.models import load_model
from utils import files_for_train, generate_train_file, make_sample

epochs = 3
input_length = 128
batch_size = 256
input_path = "/home/biot/projects/Audio_generator/data/"
output_path = "/home/biot/projects/Audio_generator/generated_music/"
# input_path = "/root/inspiron/Audio_generator/data/"
# output_path = "/root/inspiron/Audio_generator/generated_music/"
sample_length = 120000

model = load_model('music_gen_model_5.h5')

make_sample(model=model, input_path=input_path, output_path=output_path, sample_length=sample_length, epoch=epochs,
           input_length=input_length, extension='mp3')

コード例 #5
0
    'images': images if args.images == 'ON' else [],
    'tracks': [],
    'scalars': scalars if args.scalars == 'ON' else []
}
all_var = {
    **train_var, 'others': others
}
scalars = train_var['scalars']

# ARCHITECTURE SELECTION AND MULTI-GPU DISTRIBUTION
n_gpus = min(args.n_gpus,
             len(tf.config.experimental.list_physical_devices('GPU')))
devices = ['/gpu:0', '/gpu:1', '/gpu:2', '/gpu:3']
tf.debugging.set_log_device_placement(False)
strategy = tf.distribute.MirroredStrategy(devices=devices[:n_gpus])
sample, _ = make_sample(data_file, all_var, [0, 1], args.n_tracks,
                        args.n_classes)
with strategy.scope():
    if tf.__version__ >= '2.1.0':
        tf.keras.mixed_precision.experimental.set_policy('mixed_float16')
    model = multi_CNN(args.n_classes, args.NN_type, sample, args.l2,
                      args.dropout, args.alpha, args.CNN_neurons,
                      args.FCN_neurons, **train_var)
    model.summary()
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])

# SAMPLES SIZES AND APPLIED CUTS ON PHYSICS VARIABLES
sample_size = len(h5py.File(data_file, 'r')['eventNumber'])
args.n_train = [0, min(sample_size, args.n_train)
                ] if args.cross_valid == 'OFF' else [0, 0]
コード例 #6
0
train_var = {'images' :images  if args.images =='ON' else [], 'tracks':[],
             'scalars':scalars if args.scalars=='ON' else []}
other_var = ['eventNumber', 'p_TruthType', 'p_iffTruth', 'p_LHTight', 'p_LHMedium', 'p_LHLoose',
             'p_eta', 'p_et_calo','p_LHValue']
total_var = {**train_var, 'others':other_var}; scalars = train_var['scalars']


# MULTI-GPU DISTRIBUTION
n_gpus  = min(args.n_gpus, len(tf.config.experimental.list_physical_devices('GPU')))
devices = ['/gpu:0', '/gpu:1', '/gpu:2', '/gpu:3']
tf.debugging.set_log_device_placement(False)
strategy = tf.distribute.MirroredStrategy(devices=devices[:n_gpus])
with strategy.scope():
    if tf.__version__ >= '2.1.0' and len(total_var['images']) > 1:
        tf.keras.mixed_precision.experimental.set_policy('mixed_float16')
    sample, _ = make_sample(data_file, total_var, [0,1], args.n_tracks, args.n_classes)
    func_args = (args.n_classes, args.NN_type, sample, args.l2, args.dropout, CNN, args.FCN_neurons)
    model     = multi_CNN(*func_args, **train_var)
    print('\nNEURAL NETWORK ARCHITECTURE'); model.summary()
    model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])


# SAMPLES SIZES AND APPLIED CUTS ON PHYSICS VARIABLES
sample_size  = len(h5py.File(data_file, 'r')['eventNumber'])
args.n_train = [0, min(sample_size, args.n_train)] if args.cross_valid == 'OFF' else [0,0]
args.n_valid = [args.n_train[-1], min(args.n_train[-1]+args.n_valid, sample_size )]
if args.cross_valid == 'OFF' and args.n_folds > 1: args.n_valid = args.n_train
#args.valid_cuts += ' & (sample["p_et_calo"] >= 20)'
#args.valid_cuts += ' & (sample["p_et_calo"] > 4.5) & (sample["p_et_calo"] < 20)'
#args.valid_cuts += ' & (abs(sample["p_eta"] > 0.6)'
コード例 #7
0
    tf.compat.v1.logging.ERROR)  #Suppressing Tensorflow warnings
seed = None if args.n_epochs > 0 else 0
model = VariationalAutoEncoder(args.FC_layers,
                               args.n_dims * args.n_constituents,
                               seed=seed)
args.model_in = args.output_dir + '/' + args.model_in
args.model_out = args.output_dir + '/' + args.model_out
args.scaler_in = args.output_dir + '/' + args.scaler_in
args.scaler_out = args.output_dir + '/' + args.scaler_out
if args.model_in != args.output_dir + '/':
    if not os.path.isfile(args.model_in):
        sys.exit()
    print('\nLoading pre-trained weights from:', args.model_in)
    sys.stdout = open(os.devnull, 'w')  #Suppressing screen output
    sample = make_sample(args.n_constituents,
                         bkg_data,
                         OoD_data,
                         n_dims=args.n_dims)
    dataset = make_datasets(sample, sample)
    train_model(model, dataset.take(1), dataset.take(1))
    sys.stdout = sys.__stdout__  #Resuming screen output
    model.load_weights(args.model_in)
if args.scaling == 'ON' and os.path.isfile(args.scaler_in):
    print('\nLoading scaler transform from:', args.scaler_in)
    scaler = pickle.load(open(args.scaler_in, 'rb'))
args.output_dir += '/plots'
for path in list(
        accumulate([folder + '/' for folder in args.output_dir.split('/')])):
    try:
        os.mkdir(path)
    except FileExistsError:
        pass
コード例 #8
0
ファイル: classifier.py プロジェクト: mociduki/el_classifier
    print(
        "\noption [--results_in] was given but no matching file found in the right path, aborting.."
    )
    print("results_in file =", args.output_dir + '/' + args.results_in, '\n')
if args.results_in != '': sys.exit()

# MULTI-GPU DISTRIBUTION
n_gpus = min(args.n_gpus,
             len(tf.config.experimental.list_physical_devices('GPU')))
devices = ['/gpu:0', '/gpu:1', '/gpu:2', '/gpu:3']
tf.debugging.set_log_device_placement(False)
strategy = tf.distribute.MirroredStrategy(devices=devices[:n_gpus])
with strategy.scope():
    if tf.__version__ >= '2.1.0' and len(variables['images']) >= 1:
        tf.keras.mixed_precision.experimental.set_policy('mixed_float16')
    sample, _ = make_sample(args.data_file, variables, [0, 1], args.n_tracks,
                            args.n_classes)
    func_args = (args.n_classes, args.NN_type, sample, args.l2, args.dropout,
                 CNN, args.FCN_neurons)
    model = multi_CNN(*func_args, **train_var)
    print('\nNEURAL NETWORK ARCHITECTURE')
    model.summary()
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])

# ARGUMENTS AND VARIABLES TABLES
args.scaler_in = args.scaler_in if '.pkl' in args.scaler_in else ''
args.model_in = args.model_in if '.h5' in args.model_in else ''
args.results_in = args.results_in if '.h5' in args.results_in else ''
args.NN_type = 'FCN' if train_var['images'] == [] else args.NN_type
args.scaling = (args.scaling == 'ON' and scalars != [])
コード例 #9
0
ファイル: vae.py プロジェクト: dominiquegodin/ATLAS-VAE
     tf.compat.v1.logging.ERROR)  #suppress Tensorflow warnings
 for path in list(
         accumulate([folder + '/'
                     for folder in args.output_dir.split('/')])):
     try:
         os.mkdir(path)
     except FileExistsError:
         pass
 print('\nTRAINING SAMPLE:')
 sig_bins, bkg_bins = 200, 600
 log = args.weight_type != 'flat_pt'
 train_sample = make_sample(args.n_train,
                            args.n_W,
                            args.n_dims,
                            metrics,
                            train_var,
                            args.n_constituents,
                            bkg_cuts,
                            sig_cuts,
                            bkg='qcd',
                            sig='W')
 train_sample = {
     key: utils.shuffle(train_sample[key], random_state=0)
     for key in train_sample
 }
 train_sample = reweight_sample(train_sample, sig_bins, bkg_bins,
                                args.weight_type)
 var_distributions(train_sample,
                   args.output_dir,
                   sig_bins,
                   bkg_bins,
                   var='pt',