def construct_loss(X, Y, dic, Num, Model_prior, D): ''' This is the function calculating the loss function. X,Y : data, they are place holders dic : this is the ordered dictionally which contains placeholders of U Num : how many placeholders are included in dic Model_prior : what kind of model we use D : how many parameters are in the model ''' F = make_trials(D) loss = 0 for i in range(0, Num * D, D): U = [dic["U_" + str(i + j)] for j in range(D)] _W = [f(u) for f, u in zip(F, U)] #variable transformation W = [minus_inf_inf_to_zero_one(__w) for __w in _W] raw_params = _W #Variable transoformation's Log_det_Jacobian minus_Log_det_J = 0 for i in raw_params: minus_Log_det_J += -tf.reduce_sum( minus_inf_inf_to_zero_one_Log_det_J(i), 1) #likelihood and prior calculation #if you want to consider other than logistic regression, change the model and prior params = parameter_reshaper(W, b, data_dim, Num_of_hidden) Minus_Log_likelihood, Minus_Prior = Model_prior(X, Y, params) Posteri_numerator = Minus_Log_likelihood[:, None] + Minus_Prior + minus_Log_det_J[:, None] dp_du = [tf.gradients(Posteri_numerator, u)[0] for u in U] d2w_du2 = [ tf.gradients(tf.log(tf.abs(tf.gradients(_p, __u)[0])), __u)[0] for _p, __u in zip(raw_params, U) ] _G = [(i - j)**2 for i, j in zip(d2w_du2, dp_du)] L_0 = tf.reduce_sum(_G) loss += L_0 return loss, F
def construct_loss(dic,Num,Model_prior,D): ''' This is the function calculating the loss function. X,Y : data, they are place holders dic : this is the ordered dictionally which contains placeholders of U Num : how many placeholders are included in dic Model_prior : what kind of model we use D : how many parameters are in the model ''' F=make_trials(D) loss = 0 for i in range(0,Num*D,D): U=[dic["U_"+ str(i+j)] for j in range (D)] _W=[f(u) for f,u in zip(F,U)] #variable transformation W=[minus_inf_inf_to_zero_one(__w) for __w in _W] raw_params=_W #Variable transoformation's Log_det_Jacobian minus_Log_det_J=0 for i in raw_params: minus_Log_det_J+=tf.log(tf.abs(tf.reduce_sum(minus_inf_inf_to_zero_one_Log_det_J(i),1))) #likelihood and prior calculation #if you want to consider other than logistic regression, change the model and prior Log_joint=-0.5*(W[0]**2) Posteri_numerator=Log_joint+minus_Log_det_J[:,None]+np.log(1/np.sqrt((2*np.pi*np.square(1.)))) dw_du=[tf.log(tf.abs(tf.gradients(_p,__u)[0])) for _p,__u in zip(raw_params,U)] #_G=[(i+j-1)**2 for i,j in zip(dw_du,Posteri_numerator)] _G=(dw_du[0]+Posteri_numerator)**2 L_0=tf.reduce_sum(_G) loss +=L_0 return loss,F
Posteri_numerator = Log_likelihood[:, None] + Prior + minus_Log_det_J[:, None] dp_du = [tf.gradients(Posteri_numerator, u)[0] for u in U] d2w_du2 = [ tf.gradients(tf.log(tf.abs(tf.gradients(_p, __u)[0])), __u)[0] for _p, __u in zip(raw_params, U) ] _G = [(i + j)**2 for i, j in zip(d2w_du2, dp_du)] L_0 = tf.reduce_sum(_G) return L_0 F = make_trials(D) def each_loss(U): f = _each_loss(X, Y, Num, Logistic_regression_Model_prior, D, F, U) return f U_B = tf.constant([0.])[:, None] U_B2 = tf.constant([1.])[:, None] _w_t = F[0](U_B) _w_t2 = F[0](U_B2) loss = _loop(each_loss, 50, 3) + _w_t**2 + (_w_t2 - 1)**2 '''