コード例 #1
0
def dn_dr(snr, channel_width, z, params, singlesnr=False):
    '''
    number of absorbers per comoving LoS distance interval where fractional flux
    difference is larger than snr times the noise level.
    Args:
        snr, signal to noise ratio
        z, redshift
        params, dictionary of model parameters
    Returns:
        comoving number density of absorbers per line-of-sight interval (h/Mpc)
    '''
    if not singlesnr:
        splkey = ('dn_dr', channel_width, z) + dict2tuple(params)
        if not SPLINE_DICT.has_key(splkey):
            snrvals = np.logspace(SNR_INTERP_MIN, SNR_INTERP_MAX, N_INTERP_SNR)
            dndrvals = np.zeros_like(snrvals)
            for snrnum, snrval in enumerate(snrvals):
                g = lambda x: massfunc(10.**x,z)\
                *sigma_tau(tau_limit(snrval,10.**x,z,channel_width,params),
                10.**x,z,params)
                dndrvals[snrnum] = integrate.quad(g, M_INTERP_MIN,
                                                  M_INTERP_MAX)[0]
            SPLINE_DICT[splkey] = interp.interp1d(np.log(snrvals), dndrvals)
        sf = 1.
        if type(snr) == np.ndarray:
            snr[snr < 10.**SNR_INTERP_MIN] = SNR_INTERP_MIN
            snr[snr >= 10.**SNR_INTERP_MAX] = 10.**SNR_INTERP_MAX
            output = SPLINE_DICT[splkey](np.log(snr))
            output[snr < 10.**SNR_INTERP_MIN] = 0.
        else:
            if snr < 10.**SNR_INTERP_MIN:
                snr = 10.**SNR_INTERP_MIN
                sf = 0.
            elif snr >= 10.**SNR_INTERP_MAX:
                sf = 1.
                snr = 10.**SNR_INTERP_MAX
            output = SPLINE_DICT[splkey](np.log(snr))
        return sf * output
    else:
        g = lambda x: massfunc(10.**x,z)\
        *sigma_tau(tau_limit(snr,10.**x,z,channel_width,params),
        10.**x,z,params)
        return integrate.quad(g, M_INTERP_MIN, M_INTERP_MAX)[0]
コード例 #2
0
ファイル: pspec_helpers.py プロジェクト: aewallwi/Ts_Low_Z
 def g(x, bp=1.):
     rv = hi_helpers.rVir(10.**x, zval)
     rs=rv/HI_HELPERS['CSHIFUNC'](10.**x,zval,params)\
     *(1.+zval)/1e3
     rt = params['RT'] * (1. + zval) / 1e3
     rht = rs * rt / (rs + rt)
     volratio = hi_helpers.expvol(rv, rht) / hi_helpers.expvol(
         rv, rs)
     return HI_HELPERS['MHIFUNC'](10.**x,zvals,params)\
     /TS_HELPERS['TSFUNC'](10.**x,zvals,params)*volratio\
     *massfunc(10.**x,zval)*bias(10.**x,zval)**bp
コード例 #3
0
def tau_variance(z, channel_width, params):
    '''
    \int dm dtau dsigma/dtau(tau,m,z) tau^2
    Args:
        z, redshift
        channel_width, width of channels used to measure lines.
    Returns:
        d \sum \tau^2/d r_comoving (h/Mpc)
    '''
    g = lambda x: massfunc(10.**x, z) * d_tau_variance_dm(10.**x, z, params)
    return integrate.quad(g, M_INTERP_MIN, M_INTERP_MAX)
コード例 #4
0
 def g(x):
     rv = hi_helpers.rVir(10.**x, zval)
     rs=rv/HI_HELPERS[params['CSHIFUNC']](10.**x,zval,params)\
     *(1.+zval)/1e3
     rt = params['RT'] * (1. + zval) / 1e3
     rht = rs * rt / (rs + rt)
     volratio = hi_helpers.exp_vol(rv, rht) / hi_helpers.exp_vol(
         rv, rs)
     return massfunc(10.**x,zval)\
     *(HI_HELPERS[params['MHIFUNC']](10.**x,zval,params)-(1.+zval)\
     *volratio*(TCMB+rb.tb_agn_fast(zval)+rb.tb_sfg_fast(zval)\
     +acoeff*rb.tb_arc_const(F21/(1.+zval),params))\
     /TS_MODELS[params['TS0_FUNC']](10.**x,zval,params))
コード例 #5
0
ファイル: pspec_helpers.py プロジェクト: aewallwi/Ts_Low_Z
def rho_hi(z21, params):
    '''
    comoving density of HI in Msolar*h^3/Mpc^3
    Args:
        z21, float, redshift
        params, dictionary of parameters
    Returns:
        comoving density of HI in Msolar*h^3/Mpc^3
    '''
    splkey = ('rho', 'hi') + dict2tuple(params)
    if not SPLINE_DICT.has_key(splkey):
        zvals = np.linspace(0, MAXZ, NINTERP_Z)
        rhovals = np.zeros_like(zvals)
        for znum, zval in enumerate(zvals):
            g=lambda x: HI_HELPERS[params['MHIFUNC']](10.**x,zval,params)\
            *massfunc(10.**x,zval)
            rhovals[znum] = integrate.quad(g, M_INTERP_MIN, M_INTERP_MAX)[0]
        SPLINE_DICT[splkey] = interp.interp1d(zvals, np.log(rhovals))
    return np.exp(SPLINE_DICT[splkey](z21))
コード例 #6
0
ファイル: pspec_helpers.py プロジェクト: aewallwi/Ts_Low_Z
def bias_hi(z21, params):
    '''
    bias of HI
    Args:
        z21, float, redshift
        params, dictionary of parameters.
    Returns:
        bias of HI (unitless)
    '''
    splkey = ('bias', 'hi') + dict2tuple(params)
    if not SPLINE_DICT.has_key(splkey):
        zvals = np.linspace(0, MAXZ, NINTERP_Z)
        biasvals = np.zeros_like(zvals)
        for znum, zval in enumerate(zvals):
            g=lambda x:HI_HELPERS[params['MHIFUNC']](10.**x,zval,params)\
            *massfunc(10.**x,zval)*bias(10.**x,zval)
            biasvals[znum]=integrate.quad(g,M_INTERP_MIN,M_INTERP_MAX)[0]\
            /rho_hi(zval,params)
        SPLINE_DICT[splkey] = interp.interp1d(zvals, np.log(biasvals))
    return np.exp(SPLINE_DICT[splkey](z21))
コード例 #7
0
def dn_dz_tau(tau, z, params):
    '''
    number of absorbers per redshift interval with optical depths greater than
    tau.
    Args:
        tau, optical depth
        z, redshift
        params, dictionary of model parameters
    Returns: number of absorbers per redshift interval (along LoS) with optical
        depths greater than tau
    '''
    splkey = ('dn_dz_tau', z) + dict2tuple(params)
    if not SPLINE_DICT.has_key(splkey):
        tauvals = np.logspace(TAU_INTERP_MIN, TAU_INTERP_MAX, N_INTERP_TAU)
        dnvals = np.zeros_like(tauvals)
        for taunum, tauval in enumerate(tauvals):
            g=lambda x:sigma_tau(tauval,10.**x,z,params)*massfunc(10.**x,z)\
            *C*1e-3/COSMO.Hz(z)*LITTLEH
            dnvals[taunum] = integrate.quad(g, M_INTERP_MIN, M_INTERP_MAX)[0]
        SPLINE_DICT[splkey] = interp.interp1d(np.log(tauvals), dnvals)
    return SPLINE_DICT[splkey](np.log(tau))
コード例 #8
0
ファイル: pspec_helpers.py プロジェクト: aewallwi/Ts_Low_Z
def ps_integral(k, z21, power_hi, power_hits, params):
    '''
    Evaluate integral
    \frac{3 h_p^2 c^3 A_{10} (1+z)^2)}{32 \pi \nu_{21}^2 m_p H(z)} \times
    (1+z)^power_hits \times \int_{m_min}^{m_max} dm n(m)\langle
     (\tilde{\rho}_{HI}^power_{HI}(k|m,z)^power_hi) \star
     (\tilde{T}_s(k|m,z))^-power_hits
     where \star denotes convolution.
     this integral appears in most 21-cm halo model terms.
    Args:
        k, wavenumber (h/Mpc)
        z21, redshift
        power_hi, power to raise FT(rho_HI) in convolution
        power_hits, power to raise FT(Ts) in convolution
        params, dictionary of parameters, including name of convolution function
    Returns:
        Integral in K^(2-power_hits) (Mpc/h)^(6-3*power_hi)
    '''
    g=lambda x: massfunc(10.**x,z21)\
    *TS_HI_MODELS[params['RHOTSMODEL']+'_k'](k,10.**x,z21,power_hi,power_hits,params)
    return integrate.quad(g,M_INTERP_MIN,M_INTERP_MAX)[0]\
    *mTb_emiss(z21)**(power_hi+power_hits)
コード例 #9
0
def dn_dlogtau_dz(tau, z, params, recompute=False):
    '''
    compute the number of optical depth features per redshift interval
    per optical depth interval.
    Args:
        z, redshift
        tau, optical depth
        params, model parameters
    Returns:
        average number of optical depth features between tau and tau+d_tau
        and redshift z and dz in a los on the sky.
    '''
    splkey = ('dn_dlogtau_domega_dz', z) + dict2tuple(params)
    if not SPLINE_DICT.has_key(splkey) or recompute:
        tauvals = np.logspace(TAU_INTERP_MIN, TAU_INTERP_MAX, N_INTERP_TAU)
        dnvals = np.zeros_like(tauvals)
        for taunum, tauval in enumerate(tauvals):
            g=lambda x: massfunc(10.**x,z)*dsigma_dtau(tauval,10.**x,z,params)\
            *tauval*np.log(10.)
            dnvals[taunum]=integrate.quad(g,M_INTERP_MIN,M_INTERP_MAX)[0]\
            *1e-3*C/COSMO.Hz(z)*LITTLEH
        print dnvals
        SPLINE_DICT[splkey] = interp.interp1d(np.log(tauvals), dnvals)
    return SPLINE_DICT[splkey](np.log(tau))