コード例 #1
0
def read_dataset(data_dir):
    pickle_filename = "celebA.pickle"
    pickle_filepath = os.path.join(data_dir, pickle_filename)
    if not os.path.exists(pickle_filepath):
        utils.maybe_download_and_extract(data_dir, DATA_URL, is_zipfile=True)
        celebA_folder = os.path.splitext(DATA_URL.split("/")[-1])[0]
        dir_path = os.path.join(data_dir, celebA_folder)
        if not os.path.exists(dir_path):
            print("CelebA dataset needs to be downloaded and unzipped manually")
            print("Download from: %s" % DATA_URL)
            raise ValueError("Dataset not found")

        result = create_image_lists(dir_path)
        print ("Training set: %d" % len(result['train']))
        print ("Test set: %d" % len(result['test']))
        print ("Validation set: %d" % len(result['validation']))
        print ("Pickling ...")
        with open(pickle_filepath, 'wb') as f:
            pickle.dump(result, f, pickle.HIGHEST_PROTOCOL)
    else:
        print ("Found pickle file!")

    with open(pickle_filepath, 'rb') as f:
        result = pickle.load(f)
        celebA = CelebA_Dataset(result)
        del result
    return celebA
コード例 #2
0
def prepare(data_dir):
    maybe_download_and_extract(dest_directory=DATA_DIR, data_url=DATA_URL)
    directory = os.path.join(DATA_DIR, 'cifar-10-batches-py')
    files = ['batches.meta',
             'data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4',
             'data_batch_5', 'test_batch']
    files = [os.path.abspath(os.path.join(directory, f))
             for f in files]
    for f in files:
        if f.endswith("meta"):
            unpickled = _unpickle(f)
            # unpickled['num_vis'] = 3 * 32**2
            meta['num_cases_per_batch'] = unpickled['num_cases_per_batch']
            meta['label_names'] = unpickled['label_names']
            meta['labelname2index'] = {}
            for index, labelname in enumerate(meta['label_names']):
                meta['labelname2index'][labelname] = index
        elif f.endswith("test_batch"):
            unpickled = _unpickle(f)
            tu = unpickled['data'], unpickled['labels'], unpickled['filenames']
            for img, label, filename in zip(tu[0], tu[1], tu[2]):
                img = img.reshape((3, 32, 32)).transpose((1, 2, 0)).reshape(-1)
                test_data.append({'img': img,
                                  'label': label,
                                  'filename': filename})
        else:
            # ['data', 'labels', 'batch_label', 'filenames']
            unpickled = _unpickle(f)
            tu = unpickled['data'], unpickled['labels'], unpickled['filenames']
            for img, label, filename in zip(tu[0], tu[1], tu[2]):
                img = img.reshape((3, 32, 32)).transpose((1, 2, 0)).reshape(-1)
                train_data.append({'img': img,
                                   'label': label,
                                   'filename': filename})
    meta['examples_per_epoch'] = len(train_data)
コード例 #3
0
def inputs(eval_data):
    """Construct input for ShapeOverlap evaluation using the Reader ops.
    Args:
      eval_data: bool, indicating if one should use the train or eval data set.
    Returns:
      images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 6] size.
      labels: Labels. 1D tensor of [batch_size] size.
    Raises:
      ValueError: If no data_dir
    """
    maybe_download_and_extract(FLAGS.data_dir, FLAGS.DATA_URL)

    with tf.variable_scope('READ'):
        if not FLAGS.data_dir:
            raise ValueError('Please supply a data_dir')
        locks, keys, labels = overlap_input.inputs(eval_data=eval_data,
                                                   data_dir=FLAGS.data_dir,
                                                   batch_size=FLAGS.batch_size)

        if FLAGS.use_fp16:
            locks = tf.cast(locks, tf.float16)
            keys = tf.cast(keys, tf.float16)
            labels = tf.cast(labels, tf.float16)

        return locks, keys, labels
コード例 #4
0
def read_dataset(data_dir):
    pickle_filename = "MITSceneParsing.pickle"
    pickle_filepath = os.path.join(data_dir, pickle_filename)
    if not os.path.exists(pickle_filepath):
        utils.maybe_download_and_extract(data_dir, DATA_URL, is_zipfile=True)
        SceneParsing_folder = os.path.splitext(DATA_URL.split("/")[-1])[0]
        result = create_image_lists(os.path.join(data_dir,
                                                 SceneParsing_folder))
        print("Pickling ...")
        with open(pickle_filepath, 'wb') as f:
            pickle.dump(result, f, pickle.HIGHEST_PROTOCOL)
    else:
        print("Found pickle file!")

    with open(pickle_filepath, 'rb') as f:
        result = pickle.load(f)
        training_records = result['training']
        validation_records = result['validation']
        del result

    return training_records, validation_records
コード例 #5
0
        '--limit',
        help=
        'The sum of the images in the original folder and the augmentations.',
        type=int,
        default=8000)
    parser.add_argument('--gpus', help='Which GPUs to use', default='0,1,2,3')
    parser.add_argument('--threads',
                        help='How many threads to use pr GPU',
                        default=1,
                        type=int)
    parser.add_argument('--model_dir',
                        help='Path to Inception files',
                        default='/tmp/imagenet')
    args = parser.parse_args()

    maybe_download_and_extract(args.model_dir)

    q = mp.Queue()

    processes = 0
    gpus = args.gpus.split(',')
    for gpu in gpus:
        for _ in range(args.threads):
            if processes == len(args.source):
                break
            mp.Process(target=augment_images,
                       args=(q, gpu, args.target, args.limit,
                             .9 / args.threads, args.model_dir)).start()
            processes += 1

    for h5 in args.source:
コード例 #6
0
ファイル: augment.py プロジェクト: axeltidemann/propeller
    parser.add_argument(
        '--gpus',
        help='Which GPUs to use',
        default='0,1,2,3')
    parser.add_argument(
        '--threads',
        help='How many threads to use pr GPU',
        default=1,
        type=int)
    parser.add_argument(
        '--model_dir',
        help='Path to Inception files', 
        default='/tmp/imagenet')
    args = parser.parse_args()

    maybe_download_and_extract(args.model_dir)

    q = mp.Queue()
    
    processes = 0
    gpus = args.gpus.split(',')
    for gpu in gpus:
        for _ in range(args.threads):
            if processes == len(args.source):
                break
            mp.Process(target=augment_images, args=(q, gpu, args.target, args.limit,
                                                    .9/args.threads, args.model_dir)).start()
            processes += 1
                
    for h5 in args.source:
        q.put(h5)
コード例 #7
0
ファイル: DreamBot.py プロジェクト: m4-k131/DreamProcessor
run_bot = True

PATH = "/home/jpeel/PycharmProjects/DreamBot/commented.txt"
regexes = "!dreambot(?:1[0-8]|[1-9])?(?:x[2-3])?", "!dbhowto"
combined = re.compile('|'.join('(?:{0})'.format(x) for x in regexes))

model_fn = "tensorflow_inception_graph.pb"
inception_download_url = "http://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip"
save_folder = "./renderedImages/"

graph = tf.Graph()
sess = tf.InteractiveSession(graph=graph)

with tf.gfile.FastGFile(model_fn, 'rb') as f:
    ###
    utils.maybe_download_and_extract(inception_download_url, ".")
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
t_input = tf.placeholder(np.float32, name='input')
#default 117.0
imagenet_mean = 117.0
t_preprocessed = tf.expand_dims(t_input - imagenet_mean, 0)
tf.import_graph_def(graph_def, {'input': t_preprocessed})

##Not neeeded, but useful for getting available layer names#
layers = [
    op.name for op in graph.get_operations()
    if op.type == 'Conv2D' and 'import/' in op.name
]
print(layers)
コード例 #8
0
ファイル: kit_cifar.py プロジェクト: kitstar/BookNotes
def main(_):  
    ps_hosts = FLAGS.ps_hosts.split(",")
    worker_hosts = FLAGS.worker_hosts.split(",")

    # Create a cluster from the parameter server and worker hosts.
    cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})

    if FLAGS.job_name == "ps":
        ps_config = tf.ConfigProto(
                gpu_options=tf.GPUOptions(
                    per_process_gpu_memory_fraction=0.00001                
                ))

        # Create and start a server for the local task.
        server = tf.train.Server(cluster,
#                                 protocol = "grpc_rdma",
                                 job_name=FLAGS.job_name,
                                 task_index=FLAGS.task_index,
                                 config = ps_config)
        server.join()
    elif FLAGS.job_name == "worker":
        maybe_download_and_extract(FLAGS.data_dir, FLAGS.data_url)
        cifar.modify_flags(FLAGS)
        print (FLAGS.data_dir)      

        # Create and start a server for the local task.
        server = tf.train.Server(cluster,
#                                 protocol = "grpc_rdma",
                                 job_name=FLAGS.job_name,
                                 task_index=FLAGS.task_index)

        local_worker_device = "/job:worker/task:%d" % FLAGS.task_index
        with tf.device(tf.train.replica_device_setter(
            ps_device='/job:ps/cpu:0',
            worker_device=local_worker_device,
            cluster=cluster)):
            
            if FLAGS.network == 'fc':
                from models.fullyconnect import KitModel
            elif FLAGS.network == 'cifar':
                from models.cifar import KitModel
            elif FLAGS.network == 'alexnet':
                from models.alexnet import KitModel
            elif FLAGS.network == 'vgg19' or FLAGS.network == 'vgg_e':
                from models.vgg19 import KitModel
            elif FLAGS.network == 'inception_v3' :
                from models.inception_v3 import KitModel
            elif FLAGS.network == 'resnet':                
                from models.resnet import KitModel
            else:
                sys.exit("Invalid network [%s]" % FLAGS.network)
      
            this_model = KitModel(FLAGS)
            images, labels = cifar.distorted_inputs(FLAGS) 
            logits = this_model.inference(images)
            loss = this_model.loss(labels)
            train_op = this_model.train()

        train_dir = tempfile.mkdtemp()
        
        sess_config = tf.ConfigProto(
            allow_soft_placement=True, 
            log_device_placement=False,
            device_filters=["/job:ps", "/job:worker/task:%d" % FLAGS.task_index],

            graph_options=tf.GraphOptions(
                optimizer_options=tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1)
            ),

            gpu_options=tf.GPUOptions(
                visible_device_list=""
            )
        )

        if FLAGS.infer_shapes == True:
            sess_config.graph_options.infer_shapes = FLAGS.infer_shapes
         
        sv = tf.train.Supervisor(
            is_chief = (FLAGS.task_index == 0),
            logdir = train_dir,
            init_op = tf.global_variables_initializer(),
            global_step = this_model.global_step,
            summary_writer = None,
            saver = None)

        if FLAGS.task_index == 0:
            print("Worker %d: Initializing session..." % FLAGS.task_index)
        else:
            print("Worker %d: Waiting for session to be initialized..." % FLAGS.task_index)
               
        sess = sv.prepare_or_wait_for_session(server.target, config = sess_config, start_standard_services = True)

        print_model()
       
        print ("Start warmup for %d mini-batch." % FLAGS.warmup)
        for _ in range(FLAGS.warmup):
            sess.run(this_model.train_op)

        current_step = 0
        current_epoch = 1
        duration = 0
        FLAGS.epoch = FLAGS.epoch * NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
        print ("Start Training for %d mini-batch." % FLAGS.epoch)
        while current_step < FLAGS.epoch:
            current_step += 1
            start_time = time.time()
            _, step_loss = sess.run([this_model.train_op, this_model.cost])
            end_time = time.time()
#            print("Finish step %d, loss = %f, speed = %f sampes/s, duration = %f seconds" % (current_step, step_loss, FLAGS.batch_size / (end_time - start_time), end_time - start_time))
            duration += end_time - start_time
            print("Time: %f seconds, step_loss:  %f" % (duration, step_loss))
            if current_step * FLAGS.batch_size > current_epoch * NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN:
                print ("Finish epoch %d" % (current_epoch))
                current_epoch += 1


        print ("Total Time = %f s." % duration)
        #writer.close()

    else:
        sys.exit("Invalid job role name [%s]!" % FLAGS.job_name)