def test_data_loader_3D(self, batch_size=1): for j in range(self.test_samples.size): dwi = self.test_hdf5s[j]['dwi1'][:] dwi = utils.min_max_normalize(dwi) dwi = np.expand_dims(dwi.transpose(0, 3, 1, 2), axis=0) t2ax = self.test_hdf5s[j]['t2ax_cropped'][:] t2ax = utils.min_max_normalize(t2ax) t2ax = t2ax.transpose(2, 0, 1) t2ax = np.expand_dims(np.expand_dims(t2ax, axis=0), axis=0) label = np.expand_dims(np.expand_dims(self.test_labels[j], axis=0), axis=0) yield dwi, t2ax, label
def data_loader_3D(self, batch_size=1): for j in range(self.all_samples.size): print(self.subject_ids[j]) try: dwi = self.sample_hdf5s[j]['dwi1'][:] except: print('dwi1 for {} does not exist'.format(self.subject_ids[j])) sys.exit(1) dwi = utils.min_max_normalize(dwi) dwi = np.expand_dims(dwi.transpose(0, 3, 1, 2), axis=0) t2ax = self.sample_hdf5s[j]['t2ax_cropped'][:] t2ax = utils.min_max_normalize(t2ax) t2ax = t2ax.transpose(2, 0, 1) t2ax = np.expand_dims(np.expand_dims(t2ax, axis=0), axis=0) label = np.expand_dims(np.expand_dims(self.test_labels[j], axis=0), axis=0) yield dwi, t2ax, label
def generate_cam(activation, fc_weights, class_idx): activation = reshape_for_removing_batch_size(activation) class_idx = reshape_for_removing_batch_size(class_idx) channel, height, width = activation.shape cam = torch.zeros([height, width], dtype=torch.float) fc_weight = fc_weights[class_idx] fc_weight = fc_weight.view(fc_weight.shape[1]) for c in range(channel): cam += fc_weight[c] * activation[c] normalized_cam = min_max_normalize(cam) scaled_cam = np.uint8((normalized_cam * 255).int().numpy()) return cv2.resize(scaled_cam, (IMG_SIZE, IMG_SIZE))
def main(args): func = args.func side = args.side if args.file_in != None and args.file_out != None and arg.mask != None: image_path = args.file_in out_path = args.file_out mask_path = args.mask mask_file = utils.read_file(mask_path) image_file = utils.read_file(image_path) masked = utils.mask(image_file[0], mask_file[0], side) if func == "mask": utils.save_file(masked, image_file[1], image_file[2], out_path) elif func == "normalize": normalized = utils.min_max_normalize(masked) utils.save_file(normalized, image_file[1], image_file[2], out_path) else: print('func error') elif args.folder_in != None : folder_in = args.folder_in if args.folder_out != None: folder_out = args.folder_out else: folder_out = folder_in image_folder = os.path.join(folder_in, 'image') mask_folder = os.path.join(folder_in, 'mask') image_files = [] for file in os.listdir(image_folder): if file.endswith((".mgz", ".nii", ".nii.gz")): image_files.append(file) for file in image_files: image_path = os.path.join(image_folder, file) mask_path = os.path.join(mask_folder, file) if not os.path.isfile(mask_path): break image_file = utils.read_file(image_path) mask_file = utils.read_file(mask_path) masked = utils.mask(image_file[0], mask_file[0], side) if func == "mask": if file.endswith((".mgz", ".nii")): out_file = file[:-4] + '_masked.nii.gz' elif file.endswith([".nii.gz"]): out_file = file[:-7] + '_masked.nii.gz' out_path = os.path.join(folder_out, 'masked') if not os.path.exists(out_path): os.makedirs(out_path) out_path = os.path.join(out_path, out_file) utils.save_file(masked, image_file[1], image_file[2], out_path) elif func == "normalize": normalized = utils.min_max_normalize(masked) if file.endswith((".mgz", ".nii")): out_file = file[:-4] + '_normalized.nii.gz' elif file.endswith([".nii.gz"]): out_file = file[:-7] + '_normalized.nii.gz' out_path = os.path.join(folder_out, 'normalized') if not os.path.exists(out_path): os.makedirs(out_path) out_path = os.path.join(out_path, out_file) utils.save_file(normalized, image_file[1], image_file[2], out_path) else: print('func error') else: print('parameter error')
def _normalize(image, output): normalized = utils.min_max_normalize(image[0]) utils.save_file(normalized, image[1], image[2], output)
if timestamp not in turnstile: turnstile[timestamp] = {} if stamp['STATION'] not in turnstile[timestamp]: turnstile[timestamp][stamp['STATION']] = 0 turnstile[timestamp][ stamp['STATION']] += stamp['ENTRIES'] - stamp['EXITS'] print('Normalizing...') for time in list(turnstile.keys()): values = [] for _, key in enumerate(list(turnstile[time].keys())): values.append(turnstile[time][key]) values = min_max_normalize(values) for index, key in enumerate(list(turnstile[time].keys())): turnstile[time][key] = values[index] print('Tensorizing...') original_G = ox.graph_from_place('New York City, New York, USA', network_type='drive') for time in list(turnstile.keys()): G = original_G fig, ax = ox.plot_graph(G, show=False, close=False, node_size=0, edge_linewidth=0)