コード例 #1
0
        x_Feed, H_Feed, y_Feed, noise_sigma2_Feed = gen_data.dataTrain(
            0, params['SNR_dB_train'])  # 固定信道
        data_Feed = {
            'x': x_Feed,
            'y': y_Feed,
            'H': H_Feed,
            'noise_sigma2': noise_sigma2_Feed,
        }
        model_train(sess, MMNet_nodes, data_Feed)
        if epoch % 100 == 0:
            print('4', noise_sigma2_Feed)
            print('5', model_est(sess, MMNet_nodes, data_Feed))
            print('===========epoch%d,now_time is %s=========' %
                  (epoch + n * params['maxEpoch'],
                   datetime.datetime.now().strftime('%X')))
            ser_MMNet, loss = model_loss(sess, MMNet_nodes, data_Feed)
            print('ser_MMNet', ser_MMNet, 'loss=', loss, '\n')
            loss_MMNet.append(loss)
loss_all['MMNet'] = loss_MMNet
train_ed = time.time()
print("MMNet Train time is: " + str(train_ed - train_st))

# Testing
results = {
    'SNR_dBs':
    np.arange(params['SNR_dB_min_test'], params['SNR_dB_max_test'],
              params['SNR_step_test'])
}
ser_MMNets = model_eval(sess, params, MMNet_nodes, gen_data,
                        params['test_iterations'])
results['ser_MMNets'] = ser_MMNets
コード例 #2
0
    for n in range(params['nRounds']):
        for epoch in range(params['maxEpoch']):
            x_Feed, H_Feed, y_Feed, noise_sigma2_Feed = gen_data.dataTrain(
                epoch, params['SNR_dB_train'])
            data_Feed = {
                'x': x_Feed,
                'y': y_Feed,
                'H': H_Feed,
                'noise_sigma2': noise_sigma2_Feed,
            }
            model_train(sess, DetNet_nodes, data_Feed)
            if epoch % 1000 == 0:
                print('===========epoch%d,now_time is %s=========' %
                      (epoch + n * params['maxEpoch'],
                       datetime.datetime.now().strftime('%X')))
                ser_DetNet, loss = model_loss(sess, DetNet_nodes, data_Feed)
                print('ser_DetNet', ser_DetNet, 'loss=', loss, '\n')
                loss_DetNet.append(loss)
    loss_all['DetNet'] = loss_DetNet  # 损失值
    train_ed = time.time()
    print("DetNet Train time is: " + str(train_ed - train_st))

if 'OAMPNet' in params['simulation_algorithms']:
    loss_OAMPNet = []
    print('===========OAMPNet is Training, now_time is %s=========' %
          (datetime.datetime.now().strftime('%X')))
    train_st = time.time()
    for n in range(params['nRounds']):
        for epoch in range(params['maxEpoch']):
            x_Feed, H_Feed, y_Feed, noise_sigma2_Feed = gen_data.dataTrain(
                epoch, params['SNR_dB_train'])
コード例 #3
0
    for epoch in range(params['maxEpoch']):
        # x_Feed, H_Feed, y_Feed, noise_sigma2_Feed = gen_data.dataTrain(epoch, params['SNR_dB_train'])
        x_Feed, H_Feed, y_Feed, noise_sigma2_Feed = gen_data.dataTrain(
            epoch, params['SNR_dB_train'])  # 固定信道
        data_Feed = {
            'x': x_Feed,
            'y': y_Feed,
            'H': H_Feed,
            'noise_sigma2': noise_sigma2_Feed,
        }
        model_train(sess, DetNetSIC2_nodes, data_Feed)
        if epoch % 100 == 0:
            print('===========epoch%d,now_time is %s=========' %
                  (epoch + n * params['maxEpoch'],
                   datetime.datetime.now().strftime('%X')))
            ser, loss = model_loss(sess, DetNetSIC2_nodes, data_Feed)
            print('ser', ser, 'loss=', loss, '\n')
            loss_all.append(loss)
train_ed = time.time()
print("Train time is: " + str(train_ed - train_st))

# Testing
results = {
    'SNR_dBs':
    np.arange(params['SNR_dB_min_test'], params['SNR_dB_max_test'],
              params['SNR_step_test'])
}
sers = model_eval(sess, params, DetNetSIC2_nodes, gen_data,
                  params['test_iterations'])
results['ser_DetNetSIC2s'] = sers
print(sers)
コード例 #4
0
print('=========== is Training, now_time is %s=========' % (datetime.datetime.now().strftime('%X')))
train_st = time.time()
for n in range(params['nRounds']):
    for epoch in range(params['maxEpoch']):
        x_Feed, H_Feed, y_Feed, noise_sigma2_Feed = gen_data.dataTrain(epoch, params['SNR_dB_train'])
        data_Feed = {
            'x': x_Feed,
            'y': y_Feed,
            'H': H_Feed,
            'noise_sigma2': noise_sigma2_Feed,
        }
        model_train(sess, DetNetSIC3_node1, data_Feed)
        if epoch % 100 == 0:
            print('===========epoch%d,now_time is %s=========' % (epoch + n*params['maxEpoch'],
                                                                  datetime.datetime.now().strftime('%X')))
            ser, loss = model_loss(sess, DetNetSIC3_node1, data_Feed)
            print('ser', ser, 'loss=', loss, '\n')
train_ed = time.time()
print("Train time is: "+str(train_ed-train_st))

train_st = time.time()
for n in range(params['nRounds']):
    for epoch in range(params['maxEpoch']):
        x_Feed, H_Feed, y_Feed, noise_sigma2_Feed = gen_data.dataTrain(epoch, params['SNR_dB_train'])
        data_Feed = {
            'x': x_Feed,
            'y': y_Feed,
            'H': H_Feed,
            'noise_sigma2': noise_sigma2_Feed,
        }
        model_train(sess, DetNetSIC3_node2, data_Feed)