コード例 #1
0
def plotsummary(ax, lc, trace, **kwargs):
    summary = pm.summary(trace)
    summary['mode'] = list(utils.modes(trace).values())
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
    tbl = table(ax, summary.round(3), **kwargs)
    tbl.set_fontsize(30)
    return tbl
コード例 #2
0
def acfplot_withsummary(axs, lc, trace, summary_kwargs={}, acf_kwargs={}):
    summary = pm.summary(trace)
    summary['mode'] = list(utils.modes(trace).values())
    plotacf(axs[0], lc, **acf_kwargs)
    axs[1].xaxis.set_visible(False)
    axs[1].yaxis.set_visible(False)
    table(axs[1], summary.round(3))
    pl.tight_layout()
    return axs
コード例 #3
0
def lcplot(ax,
           lc,
           trace=None,
           detrend_order=2,
           plot_outliers=False,
           plot_trend=False,
           uncertainties=False,
           highlight_color='r',
           vline_color='b',
           sigmaclip_kernel_size=5,
           sigmaclip_sigma=5,
           **kwargs):
    ax.plot(lc.t, lc.flux, '.', color='k')
    trend = utils.trend(lc.t, lc.flux, detrend_order)
    mask = utils.clipmask(lc.t,
                          lc.flux,
                          kernel_size=sigmaclip_kernel_size,
                          sigma=sigmaclip_sigma)
    if plot_outliers:
        ax.plot(lc.t[mask],
                lc.flux[mask],
                '.',
                color=highlight_color,
                label='masked outliers')
    if plot_trend:
        ax.plot(lc.t,
                trend,
                color=highlight_color,
                label='order {0} polynomial fit'.format(detrend_order))
    if trace is not None:
        period = utils.modes(trace)['P']
        low, high = pm.stats.hpd(trace['P'], credible_interval=0.67)
        for i in np.arange(np.int((lc.t[-1] - lc.t[0]) / period) + 2):
            if not uncertainties:
                ax.axvline(min(lc.t) + i * period,
                           alpha=0.3,
                           linewidth=2,
                           color=vline_color)
            if uncertainties:
                vlines_min = min(lc.t) + i * low
                vlines_max = min(lc.t) + i * high
                ax.axvspan(vlines_min,
                           vlines_max,
                           alpha=0.3,
                           color=vline_color)
    ax.set_xlim((min(lc.t), max(lc.t)))
    return ax
コード例 #4
0
def writesummary(lc, trace, file):
    summary = pm.summary(trace)
    summary['mode'] = list(utils.modes(trace).values())
    columns = [
        c + "_" + n for c, n in itertools.product(list(summary.index),
                                                  list(summary.columns))
    ]
    columnstring = '\t'.join(columns)
    columnstring += '\tepic\n'
    if not os.path.isfile(file):
        with open(file, "w") as f:
            f.write("Generated with round.py version 0.1 on " + "{0}\n".format(
                datetime.datetime.now().strftime("%Y-%m-%d %H:%M")))
            f.write("Campaign: {0}\n".format(campaign))
            f.write(columnstring)
    summarystring = summary.to_numpy().flatten()
    summarystring = np.append(summarystring, lc.id)
    summarystring = summarystring[None, :]
    fmtstring = ["%0.3f"] * (summarystring.size - 1) + ["%d"]
    with open(file, "a+") as f:
        np.savetxt(f, summarystring, fmt=fmtstring, delimiter='\t')
    return summarystring
コード例 #5
0
def detect_mode(cf):
    '''Given a cantus firmus as a list of ints, attempts to detect the mode
    and returns a tuple containing a string for the name of the mode and ints
    representing the notes present in the mode, assuming that the first note provided
    is the tonic.'''
    modes = u.modes()
    tonic = cf[0]
    transposed = [(note - tonic) % 12 for note in cf]
    sums = [(sum(1 for note in transposed if note in modes[mode]), mode)
            for mode in modes]
    max_freq = max(sums, key=lambda i: i[0])[0]
    filtered = [i[1] for i in sums if i[0] == max_freq]
    if len(filtered) == 1:
        notes = [(note + tonic) % 12 for note in modes[filtered[0]]]
        return (filtered[0], notes)
    else:
        while True:
            stout = "Which mode is this in: " + ", ".join(filtered) + "?\n"
            resp = raw_input(stout).lower()
            if resp in modes:
                notes = [(note + tonic) % 12 for note in modes[resp]]
                return (resp, notes)
            print "I didn't recognize that. Type the name of a mode.\n"