コード例 #1
0
    def parse_data(self):
        reshape = self.param.get('load_data_reshape')
        file_name = self.param.get('directory_romi_dataset') + self.param.get(
            'romi_dataset_pkl')
        pixels = self.param.get('image_size')
        channels = self.param.get('image_channels')
        images = []
        positions = []
        commands = []
        with gzip.open(file_name, 'rb') as memory_file:
            memories = pickle.load(memory_file)  #, encoding='bytes')
            print('converting data...')
            count = 0
            for memory in memories:
                image = memory['image']
                if (channels == 1) and (image.ndim == 3):
                    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                if self.param.get('image_resize'):
                    image = cv2.resize(image, (pixels, pixels))

                images.append(np.asarray(image).astype('float32') / 255)

                cmd = memory['command']
                commands.append([
                    utils.normalise_x(float(cmd.x), self.param),
                    utils.normalise_y(float(cmd.y), self.param)
                ])
                #cmd_p = Position()
                #cmd_p.x = float(cmd.x)
                #cmd_p.y = float(cmd.y)
                #cmd_p.z = -90
                #cmd_p.speed = 1400

                #commands.append(normalise(cmd_p))
                pos = memory['position']
                positions.append([
                    utils.normalise_x(float(pos.x), self.param),
                    utils.normalise_y(float(pos.y), self.param)
                ])
                #pos_p = Position()
                #pos_p.x = float(pos.x)
                #pos_p.y = float(pos.y)
                #pos_p.z = -90
                #pos_p.speed = 1400

                #positions.append(normalise(pos_p))

                count += 1

        positions = np.asarray(positions)
        commands = np.asarray(commands)
        images = np.asarray(images)
        if reshape:
            images = images.reshape((len(images), pixels, pixels, channels))
        #print ('images shape ', str(images.shape))
        return images, commands, positions
コード例 #2
0
    def create_simulated_data(self, pos, cmd, param):
        self.lock.acquire()
        a = [int(pos.x), int(pos.y)]
        b = [int(cmd.x), int(cmd.y)]

        tr = self.cam_sim.get_trajectory(a, b)
        trn = self.cam_sim.get_trajectory_names(a, b)
        #print ('image size ', str(param.get('image_size')))
        rounded = self.cam_sim.round2mul(tr, 5)  # only images every 5mm
        for i in range(len(tr)):
            #pp = utils.Position()
            #pp.x = float(rounded[i][0])
            #pp.y = float(rounded[i][1])
            #pp.z = -90
            #pp.speed = 1400

            #print ('pp ',pp)
            #self.pos.append(utils.normalise(pp))
            self.pos.append([
                utils.normalise_x(float(rounded[i][0]), param),
                utils.normalise_y(float(rounded[i][1]), param)
            ])
            #self.cmd.append([float(int(cmd.x)) / utils.x_lims[1], float(int(cmd.y)) / utils.y_lims[1]] )
            self.cmd.append([
                utils.normalise_x(float(int(cmd.x)), param),
                utils.normalise_y(float(int(cmd.y)), param)
            ])
            #self.cmd.append( utils.normalise(cmd) )
            cv2_img = cv2.imread(trn[i])  #,1 )
            cv2.imshow('image', cv2_img)
            if param.get('image_channels') == 1:
                cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2GRAY)
            cv2_img = cv2.resize(
                cv2_img, (param.get('image_size'), param.get('image_size')),
                interpolation=cv2.INTER_LINEAR)
            cv2_img = cv2_img.astype('float32') / 255
            cv2_img.reshape(1,
                            param.get('image_size'), param.get('image_size'),
                            param.get('image_channels'))
            self.img.append(cv2_img)

            # update memory
            # first update the memory, then update the models
            observed_pos = self.pos[-1]
            observed_img = cv2_img
            observed_img_code = np.asarray(
                self.models.encoder.predict(
                    observed_img.reshape(
                        1, param.get('image_size'), param.get('image_size'),
                        param.get('image_channels')))).reshape(
                            param.get('code_size'))
            self.models.memory_fwd.update(observed_pos, observed_img_code)
            self.models.memory_inv.update(observed_img_code, observed_pos)

        self.lock.release()
コード例 #3
0
    def generate_simulated_sensorimotor_data(self, pos, cmd):
        #self.lock.acquire()
        a = [int(pos.x), int(pos.y)]
        b = [int(cmd.x), int(cmd.y)]

        tr = self.cam_sim.get_trajectory(a, b)
        #trn = self.cam_sim.get_trajectory_names(a,b)
        tr_img = self.cam_sim.get_trajectory_images(a, b)
        #print ('image size ', str(param.get('image_size')))
        rounded = self.cam_sim.round2mul(tr, 5)  # only images every 5mm
        for i in range(len(tr)):
            self.pos.append([
                utils.normalise_x(float(rounded[i][0]), self.parameters),
                utils.normalise_y(float(rounded[i][1]), self.parameters)
            ])
            self.cmd.append([
                utils.normalise_x(float(int(cmd.x)), self.parameters),
                utils.normalise_y(float(int(cmd.y)), self.parameters)
            ])
            self.img.append(tr_img[i])
            '''
			cv2_img = cv2.imread(trn[i])#,1 )
			if param.get('image_channels') ==1 and (cv2_img.ndim == 3):
				cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2GRAY)
			if param.get('image_resize'):
				cv2_img = cv2.resize(cv2_img,(param.get('image_size'), param.get('image_size')), interpolation = cv2.INTER_LINEAR)
			cv2_img = cv2_img.astype('float32') / 255
			cv2_img.reshape(1, param.get('image_size'), param.get('image_size'), param.get('image_channels'))
			self.img.append(cv2_img)
			'''

            # update memory
            # first update the memory, then update the models
            observed_pos = self.pos[-1]
            #observed_img = cv2_img
            observed_img = tr_img[i]
            observed_img_code = np.asarray(
                self.models.encoder.predict(
                    observed_img.reshape(
                        1, self.parameters.get('image_size'),
                        self.parameters.get('image_size'),
                        self.parameters.get('image_channels')))).reshape(
                            self.parameters.get('code_size'))
            self.models.memory_fwd.update(observed_pos, observed_img_code)
            self.models.memory_inv.update(observed_img_code, observed_pos)
コード例 #4
0
    def run_babbling(self):

        for _ in range(self.parameters.get('single_run_duration')):
            print('DOE_id: ', self.parameters.get('doe_experiment_id'), '/',
                  (self.doe_num_of_experiments - 1), '. Run:',
                  self.parameters.get('run_id'), ', iter.', self.iteration,
                  '/', self.parameters.get('single_run_duration'))
            # log current mean squared error for FWD and INV models
            self.log_MSE()

            # get the goal index in the SOM using the intrinsic motivation strategy
            self.current_goal_idx, self.current_goal_x, self.current_goal_y = self.intrinsic_motivation.select_goal(
            )
            # get the goal coordinates from the selected neuron coordinates in the SOM feature space
            self.goal_code = self.models.goal_som._weights[
                self.current_goal_x,
                self.current_goal_y].reshape(1,
                                             self.parameters.get('code_size'))

            #print ('goal code ', self.goal_code)

            # generate a motor command
            cmd = utils.Position()
            cmd_wo_noise = utils.Position()  # without noise
            cmd.x, cmd.y, cmd_wo_noise.x, cmd_wo_noise.y = self.create_motor_cmd(
            )

            # execute motor command and generate sensorimotor data
            self.generate_simulated_sensorimotor_data(self.prev_pos, cmd)
            # plot the explored points and the goal positions
            if self.iteration % self.parameters.get(
                    'plot_exploration_iter') == 0:
                goals_pos = self.models.inv_model.predict(
                    self.models.goal_som._weights.reshape(
                        len(self.models.goal_som._weights) *
                        len(self.models.goal_som._weights[0]),
                        len(self.models.goal_som._weights[0][0])))
                # plot observations and goals
                plots.plot_exploration(
                    positions=self.pos,
                    goals=goals_pos,
                    iteration=self.iteration,
                    param=self.parameters,
                    memory=False,
                    title=self.parameters.get('goal_selection_mode') + '_' +
                    str(self.iteration))
                # plot memory positions and goals
                plots.plot_exploration(
                    positions=self.models.memory_fwd.input_variables,
                    goals=goals_pos,
                    iteration=self.iteration,
                    param=self.parameters,
                    memory=True,
                    title='memory_inputs_' + str(self.iteration))

            # log the last movement
            if not self.random_cmd_flag:
                self.intrinsic_motivation.update_movement_dynamics(
                    current_pos=cmd, previous_pos=self.prev_pos)

                # update mse dynamics
                if self.iteration % self.parameters.get(
                        'im_frequency_of_update_mse_dynamics') == 0:
                    self.intrinsic_motivation.update_mse_dynamics(
                        self.models.logger_fwd.get_last_mse())

                # update error dynamics of the current goal (it is supposed that at this moment the action is finished
                #if len(self.img)>0:# and not (self.prev_goal_idx == -1) and not self.random_cmd_flag:
                #cmd_vector = [ utils.normalise_x(cmd.x, self.parameters), utils.normalise_y(cmd.y, self.parameters)]
                cmd_vector = [
                    utils.normalise_x(cmd_wo_noise.x, self.parameters),
                    utils.normalise_y(cmd_wo_noise.y, self.parameters)
                ]
                predicted_code = self.models.fwd_model.predict(
                    np.asarray(cmd_vector).reshape((1, 2)))
                prediction_error = np.linalg.norm(
                    np.asarray(self.goal_code[:]) -
                    np.asarray(predicted_code[:]))

                #observed_image_code = self.models.encoder.predict(np.asarray(self.img[-1]).reshape(1,self.parameters.get('image_size'),self.parameters.get('image_size'),self.parameters.get('image_channels')))
                #prediction_error = np.linalg.norm(np.asarray(observed_image_code[:]) - np.asarray(predicted_code[:]))

                #self.intrinsic_motivation.update_error_dynamics(self.current_goal_x, self.current_goal_y, prediction_error, _append=(self.current_goal_idx == self.prev_goal_idx))
                self.intrinsic_motivation.update_error_dynamics(
                    self.current_goal_x, self.current_goal_y, prediction_error)

            # fit models
            if len(self.img) > self.parameters.get(
                    'batch_size'):  # and (len(self.img) == len(self.pos)):
                # get image codes and position readings from the generated sensorimotor data
                observed_codes_batch = self.models.encoder.predict(
                    np.asarray(self.img[-(
                        self.parameters.get('batch_size')):]).reshape(
                            self.parameters.get('batch_size'),
                            self.parameters.get('image_size'),
                            self.parameters.get('image_size'),
                            self.parameters.get('image_channels')))
                observed_pos_batch = copy.deepcopy(
                    self.pos[-(self.parameters.get('batch_size')):])

                #print ('code[0]', observed_codes_batch[0])
                #if len(self.models.memory_fwd.output_variables)>0:
                #	print ('mem code[0]', self.models.memory_fwd.output_variables[0])
                # fit the model with the current batch of observations and the memory!
                # create then temporary input and output tensors containing batch and memory
                obs_and_mem_pos = []
                obs_and_mem_img_codes = []
                if not self.models.memory_fwd.is_memory_empty():
                    obs_and_mem_pos = np.vstack(
                        (np.asarray(observed_pos_batch),
                         np.asarray(self.models.memory_fwd.input_variables)))
                    obs_and_mem_img_codes = np.vstack(
                        (np.asarray(observed_codes_batch),
                         np.asarray(self.models.memory_fwd.output_variables)))
                else:
                    obs_and_mem_pos = np.asarray(observed_pos_batch)
                    obs_and_mem_img_codes = np.asarray(observed_codes_batch)
                # update forward and inverse models
                self.models.train_forward_code_model_on_batch(
                    obs_and_mem_pos, obs_and_mem_img_codes)
                self.models.train_inverse_code_model_on_batch(
                    obs_and_mem_img_codes, obs_and_mem_pos)
                # update autoencoder
                #train_autoencoder_on_batch(self.autoencoder, self.encoder, self.decoder, np.asarray(self.img[-32:]).reshape(32, self.image_size, self.image_size, self.channels), batch_size=self.batch_size, cae_epochs=5)
                # update goals' self organising map
                if not self.parameters.get('fixed_goal_som'):
                    self.models.update_som(
                        np.asarray(observed_codes_batch).reshape(
                            (self.parameters.get('batch_size'),
                             self.parameters.get('code_size'))))

            ##### post-process steps
            # update the previous goal index variable
            if not self.random_cmd_flag:
                self.prev_goal_idx = copy.deepcopy(self.current_goal_idx)
            # update the previous position variable for next iteration
            self.prev_pos.x = cmd.x
            self.prev_pos.y = cmd.y
            self.prev_pos.z = cmd.z
            self.prev_pos.speed = cmd.speed
            # increase iteration count
            self.iteration = self.iteration + 1

            if self.iteration % self.parameters.get(
                    'save_data_every_x_iteration') == 0:
                self.save_models()

        ### experiment is finished, save models and plots
        print('Saving models')
        self.save_models()
コード例 #5
0
    def run_babbling(self, param):
        p = utils.Position()

        for _ in range(param.get('max_iterations')):

            # record logs and data
            self.log_current_inv_mse(param)
            self.log_current_fwd_mse(param)

            #print ('Mode ', self.goal_selection_mode, ' hist_size ', str(self.history_size), ' prob ', str(self.history_buffer_update_prob), ' iteration : ', self.iteration)
            print('Iteration ', self.iteration)

            # select a goal using the intrinsic motivation strategy
            self.current_goal_idx, self.current_goal_x, self.current_goal_y = self.intrinsic_motivation.select_goal(
            )

            if param.get('goal_selection_mode') == 'db' or param.get(
                    'goal_selection_mode') == 'random':
                self.goal_image = self.test_images[
                    self.current_goal_idx].reshape(1, param.get('image_size'),
                                                   param.get('image_size'),
                                                   param.get('image_channels'))
                self.goal_code = self.models.encoder.predict(self.goal_image)
            elif param.get('goal_selection_mode') == 'som':
                self.goal_code = self.models.goal_som._weights[
                    self.current_goal_x,
                    self.current_goal_y].reshape(1, param.get('code_size'))
            else:
                print('wrong goal selection mode, exit!')
                sys.exit(1)

            # choose random motor commands from time to time
            ran = random.random()
            if ran < param.get('random_cmd_rate') or param.get(
                    'goal_selection_mode'
            ) == 'random':  #or self.models.memory_fwd.is_memory_still_not_full()
                self.random_cmd_flag = True
                print('generating random motor command')
                p.x = random.uniform(utils.x_lims[0], utils.x_lims[1])
                p.y = random.uniform(utils.y_lims[0], utils.y_lims[1])
                self.prev_goal_idx = -1

            else:
                self.random_cmd_flag = False

                motor_pred = []
                if param.get('goal_selection_mode') == 'db':
                    motor_pred = self.models.inv_model.predict(self.goal_code)
                    print('pred ', motor_pred, ' real ',
                          self.test_pos[self.current_goal_idx])
                else:
                    goal_decoded = self.models.decoder.predict(self.goal_code)
                    motor_pred = self.models.inv_model.predict(self.goal_code)
                image_pred = self.models.decoder.predict(
                    self.models.fwd_model.predict(np.asarray(motor_pred)))

                noise_x = np.random.normal(0, 0.02)
                noise_y = np.random.normal(0, 0.02)
                print('prediction ', motor_pred)
                p.x = utils.clamp_x(
                    utils.unnormalise_x(motor_pred[0][0] + noise_x, param))
                p.y = utils.clamp_y(
                    utils.unnormalise_y(motor_pred[0][1] + noise_y, param))
                #p = utils.clamp(utils.unnormalise(motor_pred[0])) # make it possible to add noise

            #print ('predicted utils.Position ', motor_pred[0], 'p+noise ', motor_pred[0][0]+noise_x, ' ' , motor_pred[0][1]+noise_y, ' utils.clamped ', p.x, ' ' , p.y, ' noise.x ', noise_x, ' n.y ', noise_y)

            p.z = int(-90)
            p.speed = int(1400)
            # generate movement
            self.create_simulated_data(self.prev_pos, p, param)
            # store the amplitude of this movement
            if not self.random_cmd_flag and (self.current_goal_idx
                                             == self.prev_goal_idx):
                self.intrinsic_motivation.log_last_movement(p, self.prev_pos)
            print('current_p', p.x, ' ', p.y)
            print('prev_p', self.prev_pos.x, ' ', self.prev_pos.y)
            # update the variables
            self.prev_pos.x = p.x
            self.prev_pos.y = p.y
            self.prev_pos.z = p.z
            self.prev_pos.speed = p.speed

            # plot the explored points and the utils.Position of the goals
            if self.iteration % param.get('plot_exploration_iter') == 0:
                if param.get('goal_selection_mode') == 'db' or param.get(
                        'goal_selection_mode') == 'random':
                    goals_pos = self.test_pos[0:(param.get('goal_size') *
                                                 param.get('goal_size'))]
                elif param.get('goal_selection_mode') == 'som':
                    goals_pos = self.models.inv_model.predict(
                        self.models.goal_som._weights.reshape(
                            len(self.models.goal_som._weights) *
                            len(self.models.goal_som._weights[0]),
                            len(self.models.goal_som._weights[0][0])))

                plot_exploration(positions=self.pos,
                                 goals=goals_pos,
                                 iteration=self.iteration,
                                 param=param)

            if self.iteration % param.get(
                    'im_pe_buffer_size_update_frequency') == 0:
                self.intrinsic_motivation.update_mse_dynamics(
                    self.models.logger_fwd.get_last_mse())

            # update error dynamics of the current goal (it is supposed that at this moment the action is finished
            if len(self.img) > 0 and not (
                    param.get('goal_selection_mode')
                    == 'random') and not (self.random_cmd_flag and len(
                        self.intrinsic_motivation.slopes_pe_buffer) > 0):

                #cmd = utils.normalise(p) # [p.x/float(utils.x_lims[1]), p.y/float(utils.y_lims[1])]
                cmd = [
                    utils.normalise_x(p.x, param),
                    utils.normalise_y(p.y, param)
                ]
                prediction_code = self.models.fwd_model.predict(
                    np.asarray(cmd).reshape((1, 2)))

                prediction_error = np.linalg.norm(
                    np.asarray(self.goal_code[:]) -
                    np.asarray(prediction_code[:]))
                if not (self.prev_goal_idx == -1):
                    self.intrinsic_motivation.update_error_dynamics(
                        self.current_goal_x,
                        self.current_goal_y,
                        prediction_error,
                        _append=(self.current_goal_idx == self.prev_goal_idx))

            # fit models
            if (len(self.img) > param.get('batch_size')) and (len(
                    self.img) == len(self.pos)):

                observed_codes_batch = self.models.encoder.predict(
                    np.asarray(self.img[-(param.get('batch_size')):]).reshape(
                        param.get('batch_size'), param.get('image_size'),
                        param.get('image_size'), param.get('image_channels')))
                observed_pos_batch = self.pos[-(param.get('batch_size')):]

                # fit the model with the current batch of observations and the memory!
                # create then temporary input and output tensors containing batch and memory

                obs_and_mem_pos = []
                obs_and_mem_img_codes = []
                if not self.models.memory_fwd.is_memory_empty():
                    obs_and_mem_pos = np.vstack(
                        (np.asarray(observed_pos_batch),
                         np.asarray(self.models.memory_fwd.input_variables)))
                    obs_and_mem_img_codes = np.vstack(
                        (np.asarray(observed_codes_batch),
                         np.asarray(self.models.memory_fwd.output_variables)))
                else:
                    obs_and_mem_pos = np.asarray(observed_pos_batch)
                    obs_and_mem_img_codes = np.asarray(observed_codes_batch)

                self.models.train_forward_code_model_on_batch(
                    obs_and_mem_pos, obs_and_mem_img_codes, param)
                self.models.train_inverse_code_model_on_batch(
                    obs_and_mem_img_codes, obs_and_mem_pos, param)

                #train_autoencoder_on_batch(self.autoencoder, self.encoder, self.decoder, np.asarray(self.img[-32:]).reshape(32, self.image_size, self.image_size, self.channels), batch_size=self.batch_size, cae_epochs=5)
            if not self.random_cmd_flag:
                self.prev_goal_idx = self.current_goal_idx
            self.iteration = self.iteration + 1
        print('Saving models')
        self.save_models(param)