def overlap_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 else: return 1
def recall_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return recall
for j, sent_span in enumerate( case.sent_spans[:self.sent_limit]): is_sp_flag = j in case.sup_fact_ids start, end = sent_span if start < end: is_support[i, j] = int(is_sp_flag) all_mapping[i, start:end + 1, j] = 1 start_mapping[i, j, start] = 1 end_mapping[i, j, end] = 1 ids.append(case.qas_id) answer = self.example_dict[case.qas_id].orig_answer_text for j, entity_span in enumerate( case.entity_spans[:self.entity_limit]): _, _, ent, _ = entity_span if normalize_answer(ent) == normalize_answer(answer): entity_label[i] = j break entity_mapping[i] = torch.from_numpy( tem_graph['entity_mapping']) max_sent_cnt = max(max_sent_cnt, len(case.sent_spans)) max_entity_cnt = max(max_entity_cnt, tem_graph['entity_length']) entity_lengths = (entity_mapping[:cur_bsz] > 0).float().sum(dim=2) entity_lengths = torch.where((entity_lengths > 0), entity_lengths, torch.ones_like(entity_lengths)) entity_mask = (entity_mapping > 0).any(2).float() input_lengths = (context_mask[:cur_bsz] > 0).long().sum(dim=1)
def main(): parser = argparse.ArgumentParser() parser.add_argument("--data_dir", default='./data', type=str, help="Data dir containing model dir, etc.") parser.add_argument( "--tfidf_file", default= 'wiki_first_paras-tfidf-ngram=2-hash=16777216-tokenizer=spacy.npz', type=str, help="td-idf .npz file placed inside the data_dir.") parser.add_argument( "--wiki_jsonl", default='wiki_firstpara_sents.jsonl', type=str, help="Processed wikipedia .jsonl placed inside data_dir.") parser.add_argument("--qdmr_jsonl", default='./data/qdmr_data/qdmrs_hotpotqa_gold.jsonl', type=str, help="Path to processed qdmr .jsonl file.") parser.add_argument("--predict_batch_size", default=128, type=int, help="Batch size for predictions in eval mode.") parser.add_argument("--tasks", default='break_rc,ques_ir,break_ir', type=str, help="The IR, RC tasks to perform.") parser.add_argument("--suffix", default='gold', type=str, help="Suffix to add to the output files.") parser.add_argument("--debug", action='store_true', help="If on, only keep a small number of qdmrs.") parser.add_argument( "--input_results_file", default='', type=str, help="File containing results of the task to be reused.") args = parser.parse_args() # we use an already finetuned single-hop RC ensemble by # Min et al (https://github.com/shmsw25/DecompRC/tree/master/DecompRC) rc_args = { 'bert_config_file': 'data/onehop_rc/uncased_L-12_H-768_A-12/bert_config.json', 'do_lower_case': True, 'doc_stride': 128, 'init_checkpoint': f'{args.data_dir}/onehop_rc/uncased_L-12_H-768_A-12/model1.pt,{args.data_dir}/onehop_rc/uncased_L-12_H-768_A-12/model2.pt,{args.data_dir}/onehop_rc/uncased_L-12_H-768_A-12/model3.pt', 'iterations_per_loop': 1000, 'local_rank': -1, 'max_answer_length': 30, 'max_n_answers': 5, 'max_query_length': 64, 'max_seq_length': 300, 'model': 'qa', 'n_best_size': 4, 'no_cuda': False, 'output_dropout_prob': 0, 'pooling': 'max', 'seed': 42, 'verbose_logging': False, 'vocab_file': 'data/onehop_rc/uncased_L-12_H-768_A-12/vocab.txt', 'with_key': False } rc_args = SimpleNamespace(**rc_args) # load hotpotQA logging.info(f'loading datasets from {args.data_dir}/hotpot_data/ ...') data = read_file(f'{args.data_dir}/hotpot_data/hotpot_train_v1.json') #data += read_file(f'{args.data_dir}/hotpot_data/hotpot_dev_distractor_v1.json') data += read_file( f'{args.data_dir}/hotpot_data/hotpot_dev_fullwiki_v1.json') for d in data: d['gold_titles'] = {x[0] for x in d['supporting_facts']} hotpot = {d['_id']: d for d in data} # load qdmr data processed using prepare_break.jsonl qdmr_path = args.qdmr_jsonl logging.info(f'loading processed qdmr data from {qdmr_path} ...') qdmrs = read_file(qdmr_path) # load spacy nlp = en_core_web_sm.load() # spacy tokenize = lambda s: [x.text for x in nlp.tokenizer(s)] # load IR logging.info('loading IR ...') ranker = IR(tfidf_path=f'{args.data_dir}/{args.tfidf_file}') # load wikipedia wiki_path = f'{args.data_dir}/{args.wiki_jsonl}' logging.info(f'loading wikipedia from {wiki_path} ...') with jsonlines.open(wiki_path, 'r') as reader: wiki = {d['title']: d['para'] for d in tqdm(reader.iter())} # prepare and load the RC for inference device = torch.device("cuda") n_gpu = torch.cuda.device_count() logging.info(f'{n_gpu} cuda devices available.') logging.info('loading 1-hop RC ensemble ...') random.seed(rc_args.seed) np.random.seed(rc_args.seed) torch.manual_seed(rc_args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(rc_args.seed) tokenizer = tokenization.FullTokenizer(vocab_file=rc_args.vocab_file, do_lower_case=rc_args.do_lower_case) bert_config = BertConfig.from_json_file(rc_args.bert_config_file) model = BertForQuestionAnswering(bert_config, 4) if rc_args.init_checkpoint is not None: model = [model] for i, checkpoint in enumerate(rc_args.init_checkpoint.split(',')): if i > 0: model.append(BertForQuestionAnswering(bert_config, 4)) logging.info(f"Loading from {checkpoint}") state_dict = torch.load(checkpoint, map_location='cpu') filter = lambda x: x[7:] if x.startswith('module.') else x state_dict = {filter(k): v for (k, v) in state_dict.items()} model[-1].load_state_dict(state_dict) model[-1].to(device) if type(model) == list: model = [m.eval() for m in model] else: model.eval() # 1hop RC wrapper simpQA = partial(_simpQA, args=args, rc_args=rc_args, tokenizer=tokenizer, model=model, device=device) if args.input_results_file: logging.info( f'Reading the supplied results file {args.input_results_file} ...') all_results = read_file(args.input_results_file) else: all_results = {} for i_d, d in enumerate(qdmrs): [_, data_split, _id] = d['question_id'].split('_') #assert data_split == 'dev' assert _id in hotpot all_results[_id] = d assert d['steps'] and d['op_types'], print( 'QDMRs must be pre-processed and non-empty.') if args.debug: all_results = { key: val for key, val in all_results.items() if random.random() < 0.01 } logging.info(f'\nTruncating to only {len(all_results)} samples!!!\n') tasks = [x.strip() for x in args.tasks.split(',')] if 'break_rc' in tasks: logging.info(f'Running BREAK IR+RC on {len(all_results)} samples ...') max_n_parts = max([len(v['steps']) for v in all_results.values()]) for i_p in range(max_n_parts): logging.info(f'Processing qdmr step #{i_p} ...') # process the i_p'th part of all samples articles = [] # hotpot articles corresponding to queries to the RC for _id, v in tqdm(all_results.items()): parts = v['steps'] if i_p >= (len(parts) - int( v['op_types'][-1] in ['COMPARISON', 'INTERSECTION'])): # the last discrete comparison, intersection step is processed later continue rc_outputs = v['rc_outputs'] if 'rc_outputs' in v else {} nbest_outputs = v[ 'nbest_outputs'] if 'nbest_outputs' in v else {} l_top = v['titles'] if 'titles' in v else [] part = parts[i_p] # replace placeholders with the respective RC outputs of previous parts for j in range(i_p): ph = '#' + str(j + 1) # 1...i_p if ph in part: part = part.replace(ph, rc_outputs[ph]) # get top 10 titles from IR top_titles = ranker.closest_docs(part, k=10)[0] l_top.append(top_titles) v.update({ 'titles': l_top, 'rc_outputs': rc_outputs, 'nbest_outputs': nbest_outputs }) context = [] # use all retrieved para for the sample instead of just current 10 & sort them acc to similarity wrt part set_l_top = set(sum(l_top, [])) scores = ranker.rank_titles(part, set_l_top) sorted_l_top = sorted(scores.keys(), key=lambda title: scores[title], reverse=True) for title in sorted_l_top: context.append([title, wiki[title]['sents'] ]) # get para from wiki if not sorted_l_top: # rare case of no valid titles context = [['Random Title 1', 'Random Text 1'], ['Random Title 2', 'Random Text 2']] d, article = hotpot[_id], {} article['question'], article[ 'context'] = part + ' ?', context # appending '?' to part query article.update({ k: d[k] for k in ['_id', 'type', 'answer'] }) # '_id', 'type', 'context', 'question', 'answer' articles.append(article) if not articles: continue # querying the 1-hop RC all_nbest_out = simpQA([to_squad(article) for article in articles])[1] for _id, v in all_results.items(): if _id not in all_nbest_out: continue nbest_i_p = all_nbest_out[_id] op = v['op_types'][i_p] nbest_id = v['nbest_outputs'] # handle filter steps if 'FILTER' in op: ref_ph = op.split('_')[1] nbest_ref = Counter(nbest_id[ref_ph]) # accumulating the logits of nbest of the part and the ref part nbest_ref.update(nbest_i_p) nbest_i_p = dict(nbest_ref) rc_out = max(nbest_i_p.keys(), key=lambda key: nbest_i_p[key]) v['rc_outputs'][f'#{i_p+1}'] = rc_out v['nbest_outputs'][f'#{i_p+1}'] = nbest_i_p # discrete processing of the last comparison step logging.info( f'Discrete processing of the last comparison/intersection steps ...' ) for _id, v in all_results.items(): if v['op_types'][-1] not in ['COMPARISON', 'INTERSECTION']: continue question, answer, gold_titles = hotpot[_id]['question'], hotpot[ _id]['answer'], hotpot[_id]['gold_titles'] parts, rc_outputs = v['steps'], v['rc_outputs'] if v['op_types'][-1] == 'COMPARISON': ents, rc_outs = [], [] for i_p, part in enumerate(parts[:-1]): # get named entity in the part part_without_phs = part for x in ['#' + str(j) for j in range(1, 8)]: part_without_phs = part_without_phs.replace(x, '') ent = get_ent(part_without_phs, nlp, only_longest=True) ent = '' if ent is None else ent ents.append(ent) rc_outs.append( normalize_answer(rc_outputs['#' + str(i_p + 1)])) if 'same as' in parts[-1]: pred_ans = 'yes' if rc_outs[-2] == rc_outs[-1] else 'no' else: pred_ans = ents[compare(parts[-1], rc_outs[-2], rc_outs[-1])] v['rc_outputs'][f'#{len(parts)}'] = pred_ans elif v['op_types'][-1] == 'INTERSECTION': part = parts[-1] phs = [ '#' + str(j) for j in range(1, 10) if '#' + str(j) in part ] phs = list(set(phs)) # accumulate logits of the parts and take the argmax nbest_id = v['nbest_outputs'] nbest = Counter(nbest_id[phs[0]]) # accumulate logits for ph in phs[1:]: if ph in nbest_id: nbest.update(nbest_id[ph]) nbest = dict(nbest) pred_ans = max(nbest.keys(), key=lambda key: nbest[key]) v['rc_outputs'][f'#{len(parts)}'] = pred_ans v['nbest_outputs'][f'#{len(parts)}'] = nbest for v in all_results.values(): assert len(v['rc_outputs']) == len(v['steps']) if 'break_ir' in tasks: # this can only be run after break_rc task & requires all_results dict logging.info( f'Forming context using the titles used by Break RC for {len(all_results)} samples ...' ) # prepare hotpot-like data for Bert RC new_hotpot = [] for _id, v in tqdm(all_results.items()): d = hotpot[_id] d_new = deepcopy(d) used_titles = sum(v['titles'], []) # sort wrt similarity to ques scores = ranker.rank_titles(d['question'], set(used_titles)) titles = sorted(scores.keys(), key=lambda title: scores[title], reverse=True) context = [] for title in titles: context.append([title, wiki[title]['sents']]) d_new['context'] = context if 'gold_titles' in d_new: del d_new['gold_titles'] new_hotpot.append(d_new) out_break_ir_file = f'{args.data_dir}/hotpot_data/hotpot_after_break_ir_{args.suffix}.json' logging.info( f'Writing hotpot version with the Break IR context to {out_break_ir_file} ...' ) write_file(new_hotpot, out_break_ir_file) # store the retrieved titles for d in new_hotpot: all_results[d['_id']]['titles_found_by_break_rc'] = list( set([x[0] for x in d['context']])) if 'ques_ir' in tasks: # this can only be run after break_rc task & requires all_results dict formed # to determine the number of titles to be retrieved for each sample logging.info( f'Running baseline IR using the whole question for {len(all_results)} samples ...' ) # prepare hotpot-like data for Bert RC new_hotpot = [] for _id in tqdm(all_results.keys()): d = hotpot[_id] d_new = deepcopy(d) # for fair comparison with Break RC retrieve the same number of titles n_titles = len(sum(all_results[_id]['titles'], [])) titles = ranker.closest_docs(d['question'], k=n_titles)[0] context = [] for title in titles: context.append([title, wiki[title]['sents']]) d_new['context'] = context if 'gold_titles' in d_new: del d_new['gold_titles'] new_hotpot.append(d_new) out_ques_ir_file = f'{args.data_dir}/hotpot_data/hotpot_after_ques_ir_{args.suffix}.json' logging.info( f'Writing hotpot version with the baseline IR context to {out_ques_ir_file} ...' ) write_file(new_hotpot, out_ques_ir_file) # store the retrieved titles for d in new_hotpot: all_results[d['_id']]['titles_found_using_whole_ques'] = list( set([x[0] for x in d['context']])) # save the Break RC outputs out_break_rc_file = f'{args.data_dir}/predictions/break_rc_results_{args.suffix}.json' logging.info(f'Writing the break RC results to {out_break_rc_file}...') os.makedirs(dirname(out_break_rc_file), exist_ok=True) write_file(all_results, out_break_rc_file)
def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth)
def cover_score(prediction, ground_truth): prediction = normalize_answer(prediction) ground_truth = normalize_answer(ground_truth) return ground_truth in prediction