def affpoints(xk, D, theta, delta): m = len(D) n = len(D[0].x) Y = [Point(n)] Y2 = [xk] index = [-1] Z = np.matrix(np.identity(n)) p = int(round(m*random()+0.5)) if p > 1.0: ## indexes check properly vec = range(p, m) vec.extend(range(0, p-1)) else: vec = range(m) if DEBUG: print vec for i in vec: if np.linalg.norm(D[i].x - xk.x) <= delta: Z = np.matrix(Z) proj_z = Z*np.linalg.inv(Z.transpose()*Z)*Z.transpose()*np.matrix(D[i].x-xk.x).transpose() if np.linalg.norm(proj_z) >= delta*theta: point = Point(n) point.x = D[i].x - xk.x Y.append(point) Y_matrix = array([]) for j in range(len(Y)): Y_matrix = np.concatenate((Y_matrix, Y[j].x), 1) Z = null(Y_matrix) Y2.append(D[i]) index.append(i) print "here" if len(Y) == n + 1: linear = True else: linear = False return Y2, linear, Z, index
def _run(self, command) : utils.run( command%self.__dict__, message = None if self._verbose else "", log = utils.null(), )
def x(self, command) : return utils.run( command%self.defs, message="" if _quiet else None, log = utils.null(), )
def x(self, command): return utils.run( command % self.defs, message="" if _quiet else None, log=utils.null(), )