コード例 #1
0
ファイル: tune_log.py プロジェクト: eghensley/ufc
def tune_dart():
    name = 'DartGBM'
    dimension = 'winner'

    stage, dart_clf, dart_checkpoint_score = stage_init(name,
                                                        dimension,
                                                        extension=EXTENSION)

    if stage == 0:
        dart_clf = lgb.LGBMClassifier(random_state=1108,
                                      n_estimators=100,
                                      subsample=.8,
                                      verbose=-1,
                                      is_unbalance=True)
        dart_clf, dart_checkpoint_score = pipe_init(X, Y, dart_clf)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 1:
        dart_clf, dart_checkpoint_score = test_scaler(dart_clf,
                                                      dart_checkpoint_score, X,
                                                      Y)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 2:
        dart_clf, dart_checkpoint_score = feat_selection(
            X, Y, dart_clf, dart_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 3:
        dart_clf, dart_checkpoint_score = test_scaler(dart_clf,
                                                      dart_checkpoint_score, X,
                                                      Y)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 4:
        dart_clf, dart_checkpoint_score = pca_tune(X, Y, dart_clf,
                                                   dart_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 5:
        dart_clf, dart_checkpoint_score = feat_selection(
            X, Y, dart_clf, dart_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 6:
        dart_clf, dart_checkpoint_score = test_scaler(dart_clf,
                                                      dart_checkpoint_score, X,
                                                      Y)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 7:
        dart_clf, dart_checkpoint_score = lgb_find_lr(dart_clf, X, Y,
                                                      dart_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 8:
        dart_clf, dart_checkpoint_score = pca_tune(X,
                                                   Y,
                                                   dart_clf,
                                                   dart_checkpoint_score,
                                                   iter_=10)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 9:
        dart_clf, dart_checkpoint_score = feat_selection(
            X, Y, dart_clf, dart_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 10:
        dart_clf, dart_checkpoint_score = test_scaler(dart_clf,
                                                      dart_checkpoint_score, X,
                                                      Y)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 11:
        dart_clf, dart_checkpoint_score = lgb_tree_params(
            X, Y, dart_clf, dart_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 12:
        dart_clf, dart_checkpoint_score = pca_tune(X,
                                                   Y,
                                                   dart_clf,
                                                   dart_checkpoint_score,
                                                   iter_=10)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 13:
        dart_clf, dart_checkpoint_score = feat_selection(
            X, Y, dart_clf, dart_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 14:
        dart_clf, dart_checkpoint_score = test_scaler(dart_clf,
                                                      dart_checkpoint_score, X,
                                                      Y)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 15:
        dart_clf, dart_checkpoint_score = lgb_drop_lr(dart_clf, X, Y,
                                                      dart_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    dart_clf,
                    dart_checkpoint_score,
                    final=True,
                    extension=EXTENSION)
コード例 #2
0
ファイル: tune_log.py プロジェクト: eghensley/ufc
def tune_polysvc():
    name = 'PolySVC'
    dimension = 'winner'

    stage, polysvc_clf, polysvc_checkpoint_score = stage_init(
        name, dimension, extension=EXTENSION)

    if stage == 0:
        polysvc_clf = SVC(random_state=1108,
                          class_weight='balanced',
                          kernel='poly',
                          probability=True)
        polysvc_clf, polysvc_checkpoint_score = pipe_init(X, Y, polysvc_clf)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 1:
        polysvc_clf, polysvc_checkpoint_score = test_scaler(
            polysvc_clf, polysvc_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 2:
        polysvc_clf, polysvc_checkpoint_score = feat_selection_2(
            X, Y, polysvc_clf, polysvc_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 3:
        polysvc_clf, polysvc_checkpoint_score = test_scaler(
            polysvc_clf, polysvc_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 4:
        polysvc_clf, polysvc_checkpoint_score = pca_tune(
            X, Y, polysvc_clf, polysvc_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 5:
        polysvc_clf, polysvc_checkpoint_score = feat_selection_2(
            X, Y, polysvc_clf, polysvc_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 6:
        polysvc_clf, polysvc_checkpoint_score = test_scaler(
            polysvc_clf, polysvc_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 7:
        polysvc_clf, polysvc_checkpoint_score = svc_hyper_parameter_tuning(
            X, Y, polysvc_clf, polysvc_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 8:
        polysvc_clf, polysvc_checkpoint_score = pca_tune(
            X, Y, polysvc_clf, polysvc_checkpoint_score, iter_=10)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 9:
        polysvc_clf, polysvc_checkpoint_score = feat_selection_2(
            X, Y, polysvc_clf, polysvc_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 10:
        polysvc_clf, polysvc_checkpoint_score = test_scaler(
            polysvc_clf, polysvc_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    polysvc_clf,
                    polysvc_checkpoint_score,
                    final=True,
                    extension=EXTENSION)
コード例 #3
0
ファイル: tune_log.py プロジェクト: eghensley/ufc
def tune_log():
    name = 'LogRegression'
    dimension = 'winner'

    stage, log_clf, log_checkpoint_score = stage_init(name,
                                                      dimension,
                                                      extension=EXTENSION)

    if stage == 0:
        log_clf = LogisticRegression(max_iter=1000,
                                     random_state=1108,
                                     class_weight='balanced',
                                     solver='lbfgs')
        log_clf, log_checkpoint_score = pipe_init(X, Y, log_clf)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 1:
        log_clf, log_checkpoint_score = test_scaler(log_clf,
                                                    log_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 2:
        log_clf, log_checkpoint_score = feat_selection(
            X, Y, log_clf, log_checkpoint_score)  #, _iter = 5)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 3:
        log_clf, log_checkpoint_score = test_scaler(log_clf,
                                                    log_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 4:
        log_clf, log_checkpoint_score = pca_tune(X, Y, log_clf,
                                                 log_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 5:
        log_clf, log_checkpoint_score = feat_selection(
            X, Y, log_clf, log_checkpoint_score)  #, _iter = 5)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 6:
        log_clf, log_checkpoint_score = test_scaler(log_clf,
                                                    log_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 7:
        log_clf, log_checkpoint_score = C_parameter_tuning(
            X, Y, log_clf, log_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 8:
        log_clf, log_checkpoint_score = pca_tune(X,
                                                 Y,
                                                 log_clf,
                                                 log_checkpoint_score,
                                                 iter_=10)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 9:
        log_clf, log_checkpoint_score = feat_selection(
            X, Y, log_clf, log_checkpoint_score)  #, _iter = 5)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 10:
        log_clf, log_checkpoint_score = test_scaler(log_clf,
                                                    log_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 11:
        log_clf, log_checkpoint_score = test_solver(X, Y, log_clf,
                                                    log_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 12:
        log_clf, log_checkpoint_score = pca_tune(X,
                                                 Y,
                                                 log_clf,
                                                 log_checkpoint_score,
                                                 iter_=10)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 13:
        log_clf, log_checkpoint_score = feat_selection(
            X, Y, log_clf, log_checkpoint_score)  #, _iter = 5)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 14:
        log_clf, log_checkpoint_score = test_scaler(log_clf,
                                                    log_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    log_clf,
                    log_checkpoint_score,
                    final=True,
                    extension=EXTENSION)
コード例 #4
0
ファイル: tune_log.py プロジェクト: eghensley/ufc
def tune_linsvc():
    name = 'LinSVC'
    dimension = 'winner'

    stage, linsvc_clf, linsvc_checkpoint_score = stage_init(
        name, dimension, extension=EXTENSION)

    if stage == 0:
        linsvc_clf = SVC(random_state=1108,
                         class_weight='balanced',
                         kernel='linear',
                         probability=True)
        linsvc_clf, linsvc_checkpoint_score = pipe_init(X, Y, linsvc_clf)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 1:
        linsvc_clf, linsvc_checkpoint_score = test_scaler(
            linsvc_clf, linsvc_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 2:
        linsvc_clf, linsvc_checkpoint_score = feat_selection(
            X, Y, linsvc_clf, linsvc_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 3:
        linsvc_clf, linsvc_checkpoint_score = test_scaler(
            linsvc_clf, linsvc_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 4:
        linsvc_clf, linsvc_checkpoint_score = pca_tune(
            X, Y, linsvc_clf, linsvc_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 5:
        linsvc_clf, linsvc_checkpoint_score = feat_selection(
            X, Y, linsvc_clf, linsvc_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 6:
        linsvc_clf, linsvc_checkpoint_score = test_scaler(
            linsvc_clf, linsvc_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 7:
        linsvc_clf, linsvc_checkpoint_score = C_parameter_tuning(
            X, Y, linsvc_clf, linsvc_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 8:
        linsvc_clf, linsvc_checkpoint_score = pca_tune(X,
                                                       Y,
                                                       linsvc_clf,
                                                       linsvc_checkpoint_score,
                                                       iter_=10)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 9:
        linsvc_clf, linsvc_checkpoint_score = feat_selection(
            X, Y, linsvc_clf, linsvc_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 10:
        linsvc_clf, linsvc_checkpoint_score = test_scaler(
            linsvc_clf, linsvc_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    linsvc_clf,
                    linsvc_checkpoint_score,
                    final=True,
                    extension=EXTENSION)
コード例 #5
0
ファイル: tune_log.py プロジェクト: eghensley/ufc
def tune_knn():
    name = 'KNN'
    dimension = 'winner'

    stage, knn_clf, knn_checkpoint_score = stage_init(name,
                                                      dimension,
                                                      extension=EXTENSION)

    if stage == 0:
        knn_clf = KNeighborsClassifier()
        knn_clf, knn_checkpoint_score = pipe_init(X, Y, knn_clf)
        _save_model(stage,
                    'winner',
                    name,
                    knn_clf,
                    knn_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 1:
        knn_clf, knn_checkpoint_score = test_scaler(knn_clf,
                                                    knn_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    knn_clf,
                    knn_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 2:
        knn_clf, knn_checkpoint_score = feat_selection_2(
            X, Y, knn_clf, knn_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    knn_clf,
                    knn_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 3:
        knn_clf, knn_checkpoint_score = test_scaler(knn_clf,
                                                    knn_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    knn_clf,
                    knn_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 4:
        knn_clf, knn_checkpoint_score = pca_tune(X, Y, knn_clf,
                                                 knn_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    knn_clf,
                    knn_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 5:
        knn_clf, knn_checkpoint_score = knn_hyper_parameter_tuning(
            X, Y, knn_clf, knn_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    knn_clf,
                    knn_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 6:
        knn_clf, knn_checkpoint_score = feat_selection_2(
            X, Y, knn_clf, knn_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    knn_clf,
                    knn_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 7:
        knn_clf, knn_checkpoint_score = test_scaler(knn_clf,
                                                    knn_checkpoint_score, X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    knn_clf,
                    knn_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 8:
        knn_clf, knn_checkpoint_score = pca_tune(X,
                                                 Y,
                                                 knn_clf,
                                                 knn_checkpoint_score,
                                                 iter_=10)
        _save_model(stage,
                    'winner',
                    name,
                    knn_clf,
                    knn_checkpoint_score,
                    final=True,
                    extension=EXTENSION)
コード例 #6
0
ファイル: tune_log.py プロジェクト: eghensley/ufc
def tune_rf():
    name = 'RFclass'
    dimension = 'winner'

    stage, rf_clf, rf_checkpoint_score = stage_init(name,
                                                    dimension,
                                                    extension=EXTENSION)

    if stage == 0:
        rf_clf = RandomForestClassifier(random_state=1108, n_estimators=100)
        rf_clf, rf_checkpoint_score = pipe_init(X, Y, rf_clf)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 1:
        rf_clf, rf_checkpoint_score = test_scaler(rf_clf, rf_checkpoint_score,
                                                  X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 2:
        rf_clf, rf_checkpoint_score = feat_selection(X, Y, rf_clf,
                                                     rf_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 3:
        rf_clf, rf_checkpoint_score = test_scaler(rf_clf, rf_checkpoint_score,
                                                  X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 4:
        rf_clf, rf_checkpoint_score = pca_tune(X, Y, rf_clf,
                                               rf_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 5:
        rf_clf, rf_checkpoint_score = feat_selection(X, Y, rf_clf,
                                                     rf_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 6:
        rf_clf, rf_checkpoint_score = test_scaler(rf_clf, rf_checkpoint_score,
                                                  X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 7:
        rf_clf, rf_checkpoint_score = forest_params(X, Y, rf_clf,
                                                    rf_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 8:
        rf_clf, rf_checkpoint_score = pca_tune(X,
                                               Y,
                                               rf_clf,
                                               rf_checkpoint_score,
                                               iter_=10)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 9:
        rf_clf, rf_checkpoint_score = feat_selection(X, Y, rf_clf,
                                                     rf_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 10:
        rf_clf, rf_checkpoint_score = test_scaler(rf_clf, rf_checkpoint_score,
                                                  X, Y)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=False,
                    extension=EXTENSION)

    elif stage == 11:
        rf_clf, rf_checkpoint_score = rf_trees(X, Y, rf_clf,
                                               rf_checkpoint_score)
        _save_model(stage,
                    'winner',
                    name,
                    rf_clf,
                    rf_checkpoint_score,
                    final=True,
                    extension=EXTENSION)