コード例 #1
0
def main(conf_name, gpu):
    # Initialize configs and prepare result dir with date
    if conf_name is None:
        conf = configs.Config()
    else:
        conf = configs.X2_REAL_CONF
        # conf = None
        # exec ('conf = configs.%s' % conf_name)
    res_dir = prepare_result_dir(conf)
    local_dir = os.path.dirname(__file__)

    # We take all png files that are not ground truth
    files = [file_path for file_path in glob.glob('%s/*.png' % conf.input_path)
             if not file_path[-7:-4] == '_gt']

    # Loop over all the files
    for file_ind, input_file in enumerate(files):

        # Ground-truth file needs to be like the input file with _gt (if exists)
        ground_truth_file = input_file[:-4] + '_gt.png'
        if not os.path.isfile(ground_truth_file):
            ground_truth_file = '0'

        # Numeric kernel files need to be like the input file with serial number
        kernel_files = ['%s_%d.mat;' % (input_file[:-4], ind) for ind in range(len(conf.scale_factors))]
        kernel_files_str = ''.join(kernel_files)
        for kernel_file in kernel_files:
            if not os.path.isfile(kernel_file[:-1]):
                kernel_files_str = '0'
                print('no kernel loaded')
                break

        print(kernel_files)

        # This option uses all the gpu resources efficiently
        if gpu == 'all':

            # Stay stuck in this loop until there is some gpu available with at least half capacity
            gpus = []
            while not gpus:
                gpus = GPUtil.getAvailable(order='memory')

            # Take the gpu with the most free memory
            cur_gpu = gpus[-1]

            # Run ZSSR from command line, open xterm for each run
            os.system("xterm -hold -e " + conf.python_path +
                      " %s/run_ZSSR_single_input.py '%s' '%s' '%s' '%s' '%s' '%s' alias python &"
                      % (local_dir, input_file, ground_truth_file, kernel_files_str, cur_gpu, conf_name, res_dir))

            # Verbose
            print('Ran file #%d: %s on GPU %d\n' % (file_ind, input_file, cur_gpu))

            # Wait 5 seconds for the previous process to start using GPU. if we wouldn't wait then GPU memory will not
            # yet be taken and all process will start on the same GPU at once and later collapse.
            sleep(5)

        # The other option is just to run sequentially on a chosen GPU.
        else:
            run_ZSSR_single_input.main(input_file, ground_truth_file, kernel_files_str, gpu, conf_name, res_dir)
コード例 #2
0
def main(conf_name, gpu):
    # will train on the first frame of the video, then run
    # inference on the rest of the frames.
    # optionally, we can also run zssr on the last image to
    # show the delta from the beginning to the end.

    if conf_name is None:
        conf = configs.Config()
    else:
        if conf_name == "X2_REAL_CONF_VIDEO":
            conf = configs.X2_REAL_CONF_VIDEO
        # elif conf_name == "X2_GRADUAL_IDEAL_CONF_VIDEO":
        #     conf = configs.X2_GRADUAL_IDEAL_CONF_VIDEO

    res_dir = prepare_result_dir(conf)
    local_dir = os.path.dirname(__file__)

    files = [
        file_path
        for file_path in glob.glob('%s/*.%s' %
                                   (conf.input_path, conf.input_file_ext))
        if not file_path[-7:-4] == '_gt'
    ]

    print("locations:", res_dir, local_dir)
    print("files:", files)

    for file_ind, input_file in enumerate(files):

        conf.name = input_file[:-4] + "_frame_1_2x2"

        vidcap = cv2.VideoCapture(input_file)

        video_length = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
        print("Number of frames: ", video_length)

        # frame 1:
        success, frame_one = vidcap.read()

        # train on frame one

        # TODO: move this conversion to run_ZSSR_single_input
        converted_frame_one = cv2.cvtColor(frame_one, cv2.COLOR_BGR2RGB)
        converted_frame_one = cv2.normalize(converted_frame_one,
                                            None,
                                            0,
                                            1,
                                            cv2.NORM_MINMAX,
                                            dtype=cv2.CV_32F)
        print(converted_frame_one)

        # TODO: not implementing ground truth at the moment.

        ground_truth_file = '0'
        image_size = frame_one.shape

        # MUST BE REVERSED FOR OPENCV STUFF
        new_image_size = (image_size[1] * 2, image_size[0] * 2)
        print("New Image Size:", new_image_size)

        fps = vidcap.get(cv2.CAP_PROP_FPS)
        print("Video FPS:", fps)

        # TODO: not implementing kernels at the moment.

        # TODO: clustering for scene detection (?)
        # or use final_test() to check if you need to retrain the net.

        kernel_files_str = '0'
        net = run_ZSSR_single_input.main(converted_frame_one,
                                         ground_truth_file, kernel_files_str,
                                         gpu, conf, res_dir)

        video_name = input_file[:-4] + "_2x2" + ".mp4"
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")

        new_vid = cv2.VideoWriter(video_name, fourcc, fps, new_image_size)

        count = 0
        image = None
        image_temp = frame_one

        while success:
            image = image_temp
            # convert to float32:
            image = cv2.normalize(image,
                                  None,
                                  0,
                                  1,
                                  cv2.NORM_MINMAX,
                                  dtype=cv2.CV_32F)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            # have to figure out how to do this
            # I think we have to use forward_pass() in ZSSR.py, but not sure.
            scaled_image = net.forward_pass(image)

            print('Inference on Frame: ', count, scaled_image.shape)

            if count % 100 == 0:
                print(scaled_image)

            # convert to something we can add to new_vid
            scaled_image = cv2.normalize(scaled_image,
                                         None,
                                         0,
                                         255,
                                         cv2.NORM_MINMAX,
                                         dtype=cv2.CV_8U)
            scaled_image = cv2.cvtColor(scaled_image, cv2.COLOR_RGB2BGR)

            # writing to new video
            new_vid.write(scaled_image)

            success, image_temp = vidcap.read()
            count += 1

        # train on the last frame
        new_vid.release()
        conf.name = input_file[:-4] + "_frame_last_2x2"
        run_ZSSR_single_input.main(image, ground_truth_file, kernel_files_str,
                                   gpu, conf, res_dir)