コード例 #1
0
def single_train_test(train_dataset,
                      test_dataset,
                      model_func,
                      epochs,
                      batch_size,
                      lr,
                      lr_decay_factor,
                      lr_decay_step_size,
                      weight_decay,
                      epoch_select,
                      with_eval_mode=True):
    assert epoch_select in ['test_last', 'test_max'], epoch_select

    model = model_func(train_dataset).to(device)
    print_weights(model)
    optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)

    train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size, shuffle=False)
    train_accs, test_accs = [], []
    t_start = time.perf_counter()
    for epoch in range(1, epochs + 1):
        if torch.cuda.is_available():
            torch.cuda.synchronize()

        train_loss, train_acc = train(
            model, optimizer, train_loader, device)
        train_accs.append(train_acc)
        test_accs.append(eval_acc(model, test_loader, device, with_eval_mode))

        if torch.cuda.is_available():
            torch.cuda.synchronize()

        print('Epoch: {:03d}, Train Acc: {:.4f}, Test Acc: {:.4f}'.format(
            epoch, train_accs[-1], test_accs[-1]))
        sys.stdout.flush()

        if epoch % lr_decay_step_size == 0:
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr_decay_factor * param_group['lr']

    t_end = time.perf_counter()
    duration = t_end - t_start

    if epoch_select == 'test_max':
        train_acc = max(train_accs)
        test_acc = max(test_accs)
    else:
        train_acc = train_accs[-1]
        test_acc = test_accs[-1]

    return train_acc, test_acc, duration, train_accs, test_accs
コード例 #2
0
def cross_validation_with_val_set(dataset,
                                  model_func,
                                  folds,
                                  percent,
                                  epochs,
                                  batch_size,
                                  lr,
                                  lr_decay_factor,
                                  lr_decay_step_size,
                                  weight_decay,
                                  epoch_select,
                                  with_eval_mode=True,
                                  logger=None):
    assert epoch_select in ['val_max', 'test_max'], epoch_select

    val_losses, train_accs, test_accs, durations = [], [], [], []
    for fold, (train_idx, test_idx, val_idx) in enumerate(
            zip(*k_fold(dataset, folds, epoch_select))):

        train_dataset = dataset[train_idx]
        train_dataset = train_dataset[:int(percent * len(train_dataset))]
        test_dataset = dataset[test_idx]
        val_dataset = dataset[val_idx]

        train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
        val_loader = DataLoader(val_dataset, batch_size, shuffle=False)
        test_loader = DataLoader(test_dataset, batch_size, shuffle=False)

        model = model_func(dataset).to(device)
        if fold == 0:
            print_weights(model)
        optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)

        if torch.cuda.is_available():
            torch.cuda.synchronize()

        t_start = time.perf_counter()

        for epoch in range(1, epochs + 1):
            train_loss, train_acc = train(
                model, optimizer, train_loader, device)
            train_accs.append(train_acc)
            val_losses.append(eval_loss(
                model, val_loader, device, with_eval_mode))
            test_accs.append(eval_acc(
                model, test_loader, device, with_eval_mode))
            eval_info = {
                'fold': fold,
                'epoch': epoch,
                'train_loss': train_loss,
                'train_acc': train_accs[-1],
                'val_loss': val_losses[-1],
                'test_acc': test_accs[-1],
            }

            if logger is not None:
                logger(eval_info)

            if epoch % lr_decay_step_size == 0:
                for param_group in optimizer.param_groups:
                    param_group['lr'] = lr_decay_factor * param_group['lr']

        if torch.cuda.is_available():
            torch.cuda.synchronize()

        t_end = time.perf_counter()
        durations.append(t_end - t_start)

    duration = tensor(durations)
    train_acc, test_acc = tensor(train_accs), tensor(test_accs)
    val_loss = tensor(val_losses)
    train_acc = train_acc.view(folds, epochs)
    test_acc = test_acc.view(folds, epochs)
    val_loss = val_loss.view(folds, epochs)
    if epoch_select == 'test_max':  # take epoch that yields best test results.
        _, selected_epoch = test_acc.mean(dim=0).max(dim=0)
        selected_epoch = selected_epoch.repeat(folds)
    else:  # take epoch that yields min val loss for each fold individually.
        _, selected_epoch = val_loss.min(dim=1)
    test_acc = test_acc[torch.arange(folds, dtype=torch.long), selected_epoch]
    train_acc_mean = train_acc[:, -1].mean().item()
    test_acc_mean = test_acc.mean().item()
    test_acc_std = test_acc.std().item()
    duration_mean = duration.mean().item()

    print('Train Acc: {:.4f}, Test Acc: {:.3f} ± {:.3f}, Duration: {:.3f}'.
          format(train_acc_mean, test_acc_mean, test_acc_std, duration_mean))
    sys.stdout.flush()

    return train_acc_mean, test_acc_mean, test_acc_std, duration_mean, \
           train_accs, test_accs
コード例 #3
0
def cross_validation_with_val_set(dataset,
                                  model_func,
                                  folds,
                                  epochs,
                                  batch_size,
                                  lr,
                                  lr_decay_factor,
                                  lr_decay_step_size,
                                  weight_decay,
                                  epoch_select,
                                  with_eval_mode=True,
                                  logger=None,
                                  dataset_name=None,
                                  aug1=None, aug_ratio1=None,
                                  aug2=None, aug_ratio2=None, suffix=None):
    assert epoch_select in ['val_max', 'test_max'], epoch_select

    val_losses, train_accs, test_accs, durations = [], [], [], []
    for fold, (train_idx, test_idx, val_idx) in enumerate(
            zip(*k_fold(dataset, folds, epoch_select))):

        """
        train_dataset = dataset[train_idx]
        test_dataset = dataset[test_idx]
        val_dataset = dataset[val_idx]

        train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
        val_loader = DataLoader(val_dataset, batch_size, shuffle=False)
        test_loader = DataLoader(test_dataset, batch_size, shuffle=False)
        """

        dataset.aug = "none"
        model = model_func(dataset).to(device)
        if fold == 0:
            print_weights(model)
        optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)

        if torch.cuda.is_available():
            torch.cuda.synchronize()

        t_start = time.perf_counter()

        for epoch in range(1, epochs + 1):
             
            train_loss, _ = train(
                model, optimizer, dataset, device, batch_size, aug1, aug_ratio1, aug2, aug_ratio2)

            print(train_loss)
            """
            train_loss, train_acc = train(
                model, optimizer, train_loader, device)
            train_accs.append(train_acc)
            val_losses.append(eval_loss(
                model, val_loader, device, with_eval_mode))
            test_accs.append(eval_acc(
                model, test_loader, device, with_eval_mode))
            eval_info = {
                'fold': fold,
                'epoch': epoch,
                'train_loss': train_loss,
                'train_acc': train_accs[-1],
                'val_loss': val_losses[-1],
                'test_acc': test_accs[-1],
            }

            if logger is not None:
                logger(eval_info)
            """

            if epoch % lr_decay_step_size == 0:
                for param_group in optimizer.param_groups:
                    param_group['lr'] = lr_decay_factor * param_group['lr']

            with open('logs/' + dataset_name + '_' + aug1 + '_' + str(aug_ratio1) + '_'+ aug2 + '_' + str(aug_ratio2) + '_cl_log', 'a+') as f:
                 f.write(str(epoch) + ' ' + str(train_loss))
                 f.write('\n')

            if epoch % 20 == 0:
                 torch.save(model.state_dict(), 'models/' + dataset_name + '_' + aug1 + '_' + str(aug_ratio1) + '_'+ aug2 + '_' + str(aug_ratio2) + '_' + str(epoch) + '_' + str(lr) + '_' + str(suffix)  + '.pt')

        print("finish run")
        break

        if torch.cuda.is_available():
            torch.cuda.synchronize()

        t_end = time.perf_counter()
        durations.append(t_end - t_start)

    """