from pydeconv import deconv_tv_al, deconv_wiener from utils import myconvolve, psf if __name__ == '__main__': #2d from matplotlib.pyplot import imread s = .1 x = imread("data/usaf.png") x*= 255 h = psf(x.shape,(3.,11)) h = psf(x.shape,(5.,5.)) h2 = psf(x.shape,(11,3)) y = myconvolve(x,h)+s*np.amax(x)*np.random.uniform(0,1,x.shape) y2 = myconvolve(x,h2)+s*np.amax(x)*np.random.uniform(0,1,x.shape) # u = deconv_tv_al([y,y2],[h,h2]) u = deconv_tv_al(y,h,10.,1.)
from pydeconv import deconv_wiener, deconv_wiener2 from utils import myconvolve, psf if __name__ == "__main__": np.random.seed(0) # 2d from matplotlib.pyplot import imread x = imread("data/usaf.png") x = np.pad(x, ((256,) * 2,) * 2, mode="constant") h = psf(x.shape, (3.0, 11)) h2 = psf(x.shape, (11, 3)) y = myconvolve(x, h) + 0.3 * np.amax(x) * np.random.uniform(0, 1, x.shape) y2 = myconvolve(x, h2) + 0.3 * np.amax(x) * np.random.uniform(0, 1, x.shape) u1 = deconv_wiener([y, y2], [h, h2], 1.0e-6) u2 = deconv_wiener2([y, y2], [h2, h], 1.0e-6) # #3d # from spimagine import read3dTiff # # x = read3dTiff("data/usaf3d.tif")[100:228,100:228,100:228]