def test_readin_0_rows(s): passed = False try: single_line = "hello\ta\tb,\th\tg" fh = io.BytesIO(single_line.encode('UTF-8')) utils.readPandas(fh) except ValueError: passed = True s.assertTrue(passed, "Error not thrown when rows have 0" " dimensions.")
def test_readin_0_columns(s): passed = False try: single_col = "hello\n1,\n2,\nhello" fh = io.BytesIO(single_col.encode('UTF-8')) utils.readPandas(fh) except ValueError: passed = True s.assertTrue(passed, "Error not thrown when columns have 0" " dimensions.")
def main(): opts = parse_args() in_file = opts.in_file out_file = opts.out_file df = readPandas(in_file) df.to_hdf(out_file, "matrix")
def main(): opts = parse_args() in_file = opts.in_file out_file = opts.out_file df = readPandas(in_file) if not opts.rows: # Col-wise fill requested. df = df.transpose() # Keep rows that have a std that isn't 0 df = df.loc[(df.std(axis=1) != 0)] if not opts.rows: # Return to same orientation df = df.transpose() df.to_csv(out_file, sep="\t")
def main(): opts = parse_args() in_file = opts.in_file out_file = opts.out_file doing_rows = opts.rows df = readPandas(in_file) duplicate_columns_check(df) if not doing_rows: df = df.transpose() row_names = df.index full_sim = spatial.inverseEucDistance(df) full_sim = pd.DataFrame(full_sim, index=row_names, columns=row_names) full_sim.to_csv(out_file, sep="\t")
def read_tabular(in_file, numeric_flag=True, log=None, replaceNA=False): ''' Reads a tabular matrix file and returns numpy matrix, col names, row names drops columns and rows that are full of nan and fills na's with zero's if the 'replaceNA' flag is up @param in_file: name of tab separated input file @param numeric_flag: if strings are found throws a value error @param log: where info chatter goes to @param replaceNA: flag to replace NA's with zero @return: numpy matrix, list of column names, list of rownames ''' df = readPandas(in_file) df = processInputData(df, numeric_flag, replaceNA) logWarningAboutNAs(df, in_file, log) npMatrix, col_header, row_header = pandasToNumpy(df) return npMatrix, col_header, row_header
def main(): # Gather the args. opts = parse_args() in_file = opts.in_file out_file = opts.out_file n_neighbors = opts.top doing_percentile = opts.percentile # Read in data and guard against cause of funky error. full_similarity = readPandas(in_file) duplicate_columns_check(full_similarity) # Make the sparse similarity representation. if doing_percentile: sparse_sim = percentile_sparsify(full_similarity, n_neighbors) else: # Using top X nearest neighbors. sparse_sim = extract_similarities(full_similarity.values, full_similarity.columns.tolist(), n_neighbors) # Write out the sparse similarity representation. sparse_sim.to_csv(out_file, sep="\t", header=None, index=False)
class Test_formatCheck(unittest.TestCase): """Tests the internal functions of the 'formatCheck' module""" # load the pandas data frames into memory. full_sim = utils.readPandas(os.path.join(inDir, "similarity_full.tab")) neighbors = utils.readPandas(os.path.join(inDir, "similarity.tab")) clusterData = utils.readPandas(os.path.join(inDir, "full_matrix.tab")) xy1 = utils.readPandas(os.path.join(xyDir, "xyPreSquiggle_0.tab")) xy2 = utils.readPandas(os.path.join(xyDir, "assignments0.tab")) unknown = utils.readPandas(os.path.join(inDir, "attributes.tab")) edge_case1 = pd.DataFrame([[1, 1], [2, 3]], index=[1, 2]) edge_case2 = pd.DataFrame([["a", 2], [2, 3]], index=[1, 2]) edge_case3 = pd.DataFrame([["a", "b"], ["c", "d"]], index=["b", "b"]) def test_compute_sparse_string_find(s): firstStr = csm.firstOccurenceOfString(s.edge_case2) s.assertTrue(firstStr == "a", "Couldn't find first string " "occurence") def test_compute_sparse_string_find2(s): firstStr = csm.firstOccurenceOfString(s.edge_case3) s.assertTrue(firstStr == "a", "Couldn't find first string " "occurence") def test_compute_sparse_hasStrings_does(s): s.assertTrue( csm.hasStrings(s.edge_case3), "Did not identify matrix as having strings " "when strings are present") def test_compute_sparse_hasStrings_does2(s): s.assertTrue( csm.hasStrings(s.edge_case2), "Did not identify matrix as having strings " "when strings are present") def test_compute_sparse_hasStrings_doesnt(s): s.assertTrue( csm.hasStrings(s.edge_case1) == False, "Identified matrix as having strings " "when no strings present") #test the header reading too def test_edge1(s): try: fc._layoutInputFormat(s.edge_case1) s.assertTrue(False) except ValueError: s.assertTrue(True) def test_edge2(s): format_ = fc._layoutInputFormat(s.edge_case2) s.assertTrue(format_ == "sparseSimilarity") def test_edge3(s): format_ = fc._layoutInputFormat(s.edge_case3) s.assertTrue(format_ == "unknown") def test_isXYpositions1(s): s.assertTrue(fc._isXYPositions(s.xy1)) def test_fSimNotXYpositions1(s): s.assertTrue(not fc._isXYPositions(s.full_sim)) def test_sSimNotXYpositions1(s): s.assertTrue(not fc._isXYPositions(s.neighbors)) def test_cDataNotXYpositions1(s): s.assertTrue(not fc._isXYPositions(s.clusterData)) def test_unkownNotXYpositions1(s): s.assertTrue(not fc._isXYPositions(s.unknown)) def test_isXYpositions2(s): s.assertTrue(fc._isXYPositions(s.xy2)) def test_isFullSimilarity(s): s.assertTrue(fc._isFullSimilarity(s.full_sim)) def test_xyNotFullSimilarity(s): s.assertTrue(not fc._isFullSimilarity(s.xy1)) def test_cDataNotFullSimilarity(s): s.assertTrue(not fc._isFullSimilarity(s.clusterData)) def test_sSimNotFullSimilarity(s): s.assertTrue(not fc._isFullSimilarity(s.neighbors)) def test_unknownNotFullSimilarity(s): s.assertTrue(not fc._isFullSimilarity(s.unknown)) def test_isSparseSimilarity(s): s.assertTrue(fc._isSparseSimilarity(s.neighbors)) def test_fSimNotSparseSimilarity(s): s.assertTrue(not fc._isSparseSimilarity(s.full_sim)) def test_cDataNotSparseSimilarity(s): s.assertTrue(not fc._isSparseSimilarity(s.clusterData)) def test_xyNotSparseSimilarity(s): s.assertTrue(not fc._isSparseSimilarity(s.xy1)) s.assertTrue(not fc._isSparseSimilarity(s.xy2)) def test_unkownNotSparseSimilarity(s): s.assertTrue(not fc._isSparseSimilarity(s.unknown)) def test_isClusterData(s): s.assertTrue(fc._isClusterData(s.clusterData)) def test_sSimNotClusterData(s): s.assertTrue(not fc._isClusterData(s.neighbors)) def test_unknownNotClusterData(s): s.assertTrue(not fc._isClusterData(s.unknown)) def test_inferred_ClusterData(s): s.assertTrue(fc._layoutInputFormat(s.clusterData) == "clusterData") def test_inferred_xyPositions1(s): s.assertTrue(fc._layoutInputFormat(s.xy1) == "xyPositions") def test_inferred_xyPositions2(s): s.assertTrue(fc._layoutInputFormat(s.xy2) == "xyPositions") def test_inferred_unknown(s): s.assertTrue(fc._layoutInputFormat(s.unknown) == "unknown") def test_inferred_sparseSimilarity(s): s.assertTrue(fc._layoutInputFormat(s.neighbors) == "sparseSimilarity") def test_inferred_fullSimilarity(s): s.assertTrue(fc._layoutInputFormat(s.full_sim) == "fullSimilarity") def test_recognize_sim_header1(s): first_line = utils._firstLineArray( os.path.join(inDir, "sim_with_header")) header_line = fc.type_of_3col(first_line) s.assertTrue(header_line == "sparseSimilarity") def test_dont_recognize_sim_header(s): first_line = utils._firstLineArray( os.path.join(inDir, "similarity.tab")) header_line = fc.type_of_3col(first_line) s.assertTrue(header_line == "NOT_VALID") def test_recognize_xy_header1(s): first_line = utils._firstLineArray( os.path.join(inDir, "xy_with_header")) header_line = fc.type_of_3col(first_line) s.assertTrue(header_line == "xyPositions") def test_recognize_xy_header2(s): first_line = utils._firstLineArray( os.path.join(inDir, "coordinates.tab")) header_line = fc.type_of_3col(first_line) s.assertTrue(header_line == "NOT_VALID") def test_duplicateCheck_with_dups(s): passed = False try: hasDups = ["hello", 1, 2, "hello"] utils.duplicates_check(hasDups) except ValueError: passed = True s.assertTrue(passed, "duplicate_check did not register duplicates") def test_duplicateCheck_with_nodups(s): passed = True try: noDups = ["hell", 1, 2, "hello"] utils.duplicates_check(noDups) except ValueError: passed = False s.assertTrue(passed, "duplicate_check registered false duplicates") def test_readin_0_columns(s): passed = False try: single_col = "hello\n1,\n2,\nhello" fh = io.BytesIO(single_col.encode('UTF-8')) utils.readPandas(fh) except ValueError: passed = True s.assertTrue(passed, "Error not thrown when columns have 0" " dimensions.") def test_readin_0_rows(s): passed = False try: single_line = "hello\ta\tb,\th\tg" fh = io.BytesIO(single_line.encode('UTF-8')) utils.readPandas(fh) except ValueError: passed = True s.assertTrue(passed, "Error not thrown when rows have 0" " dimensions.")