def read_json(): return_dict = read_excel('test_down') time = return_dict['time'] # with open('y_pred_speed.json', 'r') as f: pred_speed = json.load(f) with open('y_pred_flow.json', 'r') as f: pred_flow = json.load(f) with open('y_true_speed.json', 'r') as f: true_speed = json.load(f) with open('y_true_flow.json', 'r') as f: true_flow = json.load(f) cut = np.where( time == np.datetime64('2019-04-08T08:15:00'))[0].tolist()[0] + 1 # speed = return_dict['speed'] # flow = return_dict['flow'] pred_speed = np.array(pred_speed).reshape(-1, 1) pred_flow = np.array(pred_flow).reshape(-1, 1) true_speed = np.array(true_speed).reshape(-1, 1) true_flow = np.array(true_flow).reshape(-1, 1) return time[cut:], pred_speed, pred_flow, true_speed, true_flow
def data_uploader(): # Uploading data uploaded_file = st.file_uploader( "Upload the Sensor Data file (only .XLSX format)", type="xlsx") if uploaded_file is not None: return ut.read_excel(uploaded_file) else: return None
def get_final_weight(): return_dict = read_excel('train_up') time = return_dict['time'] speed = return_dict['speed'] flow = return_dict['flow'] speed_scaler = return_dict['scaler_speed'] flow_scaler = return_dict['scaler_flow'] speed = speed_scaler.inverse_transform(speed) flow = flow_scaler.inverse_transform(flow) _, mw, ew, ow = cal_entropy_weight(time, speed, flow) return mw, ew, ow
def create_vids_from_excel(inpfile, sheet, tmpdir, story, first_slide, last_slide, voice, user): mdir = os.getcwd() files = ['pup.js', 'blank.mp3', 'blank_long.mp3', 'logo.png'] for f in files: shutil.copy(f, "{0}/{1}".format(tmpdir, f)) os.chdir(tmpdir) os.mkdir('images') sheet = read_excel(inpfile, sheet) create_intro_video(sheet, voice) normal_videos = [] slow_videos = [] split_videos = [] start = int(first_slide) end = int(last_slide)+1 for i in range(start, end): if not sheet.cell(row=i, column=1).value: continue para = sheet.cell(row=i, column=2).value.strip() (json_data, json_data_slow, json_data_split) = create_audio_data(para, voice) images_text = ' '.join(para.strip().replace('*', '').replace('\n', ' \n ').split(' ')) # print("images text: " + images_text) images = create_images(images_text, sheet.cell(row=i, column=3).value, story) json_data = process_json_data(json_data, voice) json_data_slow = process_json_data(json_data_slow, voice) json_data_split = process_json_data(json_data_split, voice) create_para_vid(1, i-start-1, json_data, images, 'audio.mp3', "vid{}".format(str(i-start+1))) create_para_vid(0.75, i-start-1, json_data_slow, images, 'audio_slow.mp3', "vid{}-slow".format(str(i-start+1))) create_para_vid(1, i-start-1, json_data_split, images, 'audio_split.mp3', "vid{}-split".format(str(i-start+1))) normal_videos.append("vid{}.mp4".format(str(i-start+1))) slow_videos.append("vid{}-slow.mp4".format(str(i-start+1))) split_videos.append("vid{}-split.mp4".format(str(i-start+1))) os.chdir(os.path.join(mdir, 'static', 'videos', user)) if story=='1': os.chdir("Stories") else: os.chdir("Other Videos") os.mkdir(output_name) print(output_name) os.chdir(os.path.join(os.getcwd(), output_name)) print(os.getcwd()) concatenate_videos(["intro.mp4"]+normal_videos, "{}-fast.mp4".format(output_name), tmpdir) concatenate_videos(["intro.mp4"]+slow_videos, "{}-medium.mp4".format(output_name), tmpdir) concatenate_videos(["intro.mp4"]+split_videos, "{}-slow.mp4".format(output_name), tmpdir)
def rebalance(spread_sheet_name, idx_name): portfolio_fname = 'portfolio-analysis-' + idx_name + '.p' bad_fname = 'not-portfolio-analysis-' + idx_name + '.p' port_df = u.read_pickle(portfolio_fname) bad = u.read_pickle(bad_fname) spread_sheet = u.read_excel(spread_sheet_name) # get current allocation current_alloc = s.get_portfoilo_alloc(spread_sheet) tickers = spread_sheet.ticker.to_list() bad_list = [] new_port_df = pd.DataFrame() # kick out current port members that did not make the cut for ticker in tickers: if len(bad[bad.ticker == ticker]) == 0: # not found tmp_df = port_df[port_df.ticker == ticker] if len(tmp_df) == 0: log.info('ticker not found {}'.format(ticker)) bad_list.append({'ticker': ticker, 'notes': 'Not found'}) continue new_port_df = new_port_df.append(tmp_df) else: bad_list.append({'ticker': ticker, 'notes': 'SELL'}) log.info('ticker {} did not make the cut. dropping from portfolio'. format(ticker)) # replace kicked out entries if len(bad_list): not_in_port = port_df[~port_df.ticker.isin(new_port_df.ticker)].dropna( ) new_members = not_in_port[:len(bad_list)].copy() new_members['notes'] = 'NEW BUY' new_port_df = new_port_df.append(new_members) r.do_allocation(new_port_df, len(new_port_df)) new_port_df = new_port_df.append(bad_list, ignore_index=True) sheet_name = 'portfolio-' + str(date.today()) # add sheets to spreadsheet u.append_worksheet_to_excel(spread_sheet_name, sheet_name, new_port_df) u.append_worksheet_to_excel(spread_sheet_name, 'current-alloc', current_alloc)
def create_vids(inpfile, sheet_name, tmpdir, story, first_slide, last_slide, audio_in, user): mdir = os.getcwd() files = ['pup.js', 'blank.mp3', 'blank_long.mp3', 'logo.png'] for f in files: shutil.copy(f, "{0}/{1}".format(tmpdir, f)) os.chdir(tmpdir) os.mkdir('images') audio_files = split_audio_on_silence(audio_in) print(audio_files) sheet = read_excel(inpfile, sheet_name) create_intro_video(sheet, audio_files[0]) page_videos = [] start = int(first_slide) end = int(last_slide) + 1 for i in range(start, end): if not sheet.cell(row=i, column=1).value: continue page_no = i - start + 1 para = sheet.cell(row=i, column=2).value.strip() image_text = ' '.join(para.strip().replace('*', '').replace( '\n', ' \n ').split(' ')) image = create_image(image_text, sheet.cell(row=i, column=3).value, page_no, story) audio_file = audio_files[page_no] create_page_vid(page_no, audio_file, image) page_videos.append("{}.mp4".format(page_no)) os.chdir(os.path.join(mdir, 'static', 'videos', user)) if story == '1': os.chdir("Stories") else: os.chdir("Other Videos") os.mkdir(output_name) os.chdir(os.path.join(os.getcwd(), output_name)) concatenate_videos(["intro.mp4"] + page_videos, "{}.mp4".format(output_name), tmpdir)
def get_S(fname): df = read_excel(fname, header=[0]) df.head() freq = np.asarray(df.index) dx = 0.01 # gT = graphTool((2,1), (10,10)) S11_DB = df[('log_s11')] S11_phase = df[(('phase_s11'))] S11 = get_S_parameter(S11_DB, S11_phase) S11 = S11.reshape(1, 801) S21_DB = df[('log_s21')] S21_phase = df[(('phase_s21'))] S21 = get_S_parameter(S21_DB, S21_phase) S21 = S21.reshape(1, 801) return freq, S11, S21
help = "Columnfile in which the value of each column is specified (needed for " + ".xls(x) and .txt files, not for .json files") parser.add_argument('--header', action = 'store_true', help = "Specify if the file contains a header") args = parser.parse_args() # read in file if args.i[-3:] == "xls" or args.i[-4:] == "xlsx": # make sure date and time fields are correctly processed indexline = utils.read_columnfile(args.c) date, time = False, False if indexline[3] != "-": date = indexline[3] if indexline[4] != "-": time = indexline[4] lines = utils.read_excel(args.i, args.header, date, time) elif args.i[-4:] == "json": csvrows = utils.read_json(args.i) else: # txt file with open(args.i, encoding="utf-8") as fn: lines = [x.strip().split("\t") for x in fn.readlines()] if args.header: lines = lines[1:] # with open(args.o, 'w') as csvfile: # writer = csv.writer(csvfile) # for line in lines: # writer.writerow(line) # quit() # set columns of lines in right order
import pandas as pd import numpy as np from utils import read_excel, graphTool df = read_excel('NRW~1\MeasData(19-12-23 17-10-06)_CNT.xls') df.columns gT = graphTool(figshape=(1,1), figsize= (5,5)) freq = np.asarray(df.index) S11 = np.exp(df[('LOG MAG [dB]', 'S11')].to_numpy()) S11_i = S21 = np.exp(df[('LOG MAG [dB]', 'S21')].to_numpy()) gT.plot(ax_num=(0,0), x = freq, y = S11_logMagnitude, c='r', label ='S11') gT.plot(ax_num=(0,0), x = freq, y = S21_logMagnitude, c='b', label ='S21') **2 S11**2