コード例 #1
0
        [np.ndarray, np.bool]: [A binary image]
    """

    # START YOUR CODE HERE ### (You can change anything inside this block)
    binary_im = np.zeros_like(im, dtype=np.bool)
    ### END YOUR CODE HERE ###
    return binary_im


if __name__ == "__main__":
    # NO NEED TO EDIT THE CODE BELOW.
    verbose = True
    plt.figure(figsize=(4, 12))
    plt.tight_layout()
    images_to_visualize = []
    for i, impath in enumerate(impaths):
        im = utils.read_im(str(impath))
        im_binary = create_binary_image(im)
        assert im_binary.dtype == np.bool, f"Expected the image to be of dtype np.bool, got {im_binary.dtype}"
        angles, distances = utils.find_angle(im_binary)
        angle = 0
        if len(angles) > 0:
            angle = angles[0] * 180 / np.pi
        print(f"Found angle: {angle:.2f}")
        hough_im = utils.create_hough_line_image(im, angles, distances)
        rotated = skimage.transform.rotate(im, angle, cval=im.max())
        images_to_visualize.extend([im, im_binary, hough_im, rotated])
    image = utils.np_make_image_grid(images_to_visualize, nrow=len(impaths))
    utils.save_im("task4d.png", image)
    plt.imshow(image, cmap="gray")
コード例 #2
0
import matplotlib.pyplot as plt
import pathlib
import numpy as np
import time
from utils import read_im, save_im, normalize
output_dir = pathlib.Path("image_solutions")
output_dir.mkdir(exist_ok=True)

im = read_im(pathlib.Path("images", "lake.jpg"))
plt.imshow(im)


def convolve_im(im, kernel):
    """ A function that convolves im with kernel

    Args:
        im ([type]): [np.array of shape [H, W, 3]]
        kernel ([type]): [np.array of shape [K, K]]

    Returns:
        [type]: [np.array of shape [H, W, 3]. should be same as im]
    """
    assert len(im.shape) == 3

    # Rotate kernel
    cKernel = kernel.copy()
    kLen = len(kernel)
    for y in range(kLen):
        for x in range(kLen):
            cKernel[y][x] = kernel[kLen - y - 1][kLen - x - 1]
コード例 #3
0
import os
import numpy as np
import utils
import matplotlib.pyplot as plt


def magnitude(fft_im):
    real = fft_im.real
    imag = fft_im.imag
    return np.sqrt(real**2 + imag**2)


if __name__ == "__main__":
    # DO NOT CHANGE
    impath = os.path.join("images", "noisy_moon.png")
    im = utils.read_im(impath)

    # START YOUR CODE HERE ### (You can change anything inside this block)

    # Since the spikes are on a simple horizontal line in the center around [265:275], we
    # can simply craete a kernel which removes theese values. Non-shifted, [265:275] becomes [0:10]
    # Note that the middle area should be unaffected.
    kernel = np.ones(im.shape)
    spike_height = 4  # Lines are barely visible at < 4
    image_center_x = im.shape[1] // 2
    image_center_y = im.shape[0] // 2
    center_width = 28  # Lines are visible for > 28

    kernel[image_center_y - spike_height //
           2:image_center_y + spike_height // 2] = 0
    kernel[image_center_y - spike_height // 2:image_center_y + spike_height //