import utils import numpy as np import sys fileName = sys.argv[1] oldArray = utils.read_image_as_bw(fileName) newArray = np.copy(oldArray) shape = oldArray.shape height = shape[0] width = shape[1] for i in range(height): for j in range(width): newArray[i][j] = oldArray[-i][j] outPath = 'images/output/' + fileName utils.show_image(newArray) utils.save_bw_image(newArray, outPath)
elif blur.startswith("mean"): n = blur[4:] n = int(n) img = mean_blur(img, n) if method == 'sobel': X_edges, Y_edges = sobel_edges_x_and_y(img) elif method == 'central_difference': X_edges, Y_edges = central_diff_edges_x_and_y(img) magnitudes = compute_edge_magnitudes(X_edges, Y_edges) directions = compute_edge_directions(X_edges, Y_edges) img = suppress_edges(magnitudes, directions) magnitudes[img == 1] = 0 magnitudes = magnitudes * (255.0 / magnitudes.max()) threshImg = np.copy(magnitudes) threshImg[threshImg > t] = 255 threshImg[threshImg < t] = 0 return threshImg path = r'C:\Users\Blake\Desktop\Vision\Lab 4\images\input\Piano.jpg' img = utils.read_image_as_bw(path) img = find_edges(img, 'sobel', 'gaussian3', 40) utils.show_image(img) #savePath = path = r'C:\Users\Blake\Desktop\Vision\Lab 4\images\output\Piano_edges.jpg' #utils.save_bw_image(img, savePath)
#number is 9 - right side final.append(9) elif currSegment == [0, 0, 0, 255, 255, 0, 255]: #number is 0 - right side final.append(0) else: a = a #print('broke') final.append('broke') #print(currSegment) currSegment = [] if flipped == True: final.reverse() return final imgPath = r'C:\Users\Blake\Desktop\Vision\Lab 6\images\easy.jpg' img = utils.read_image_as_bw(imgPath) img = np.rot90(img, 3) barcode = find_barcode(img) connComp = getLargestCC(barcode) bar = getBarcode(img, connComp) print(readBarcode(bar))