コード例 #1
0
def make_dataset(classlist, labellist=None):
    images = []
    labels = []
    classes = utils.readtextfile(ifile)
    classes = [x.rstrip('\n') for x in classes]
    classes.sort()

    for i in len(classes):
        for fname in os.listdir(classes[i]):
            if is_image_file(fname):
                label = {}
                label['class'] = os.path.split(classes[i])
                images.append(fname)
                labels.append(label)

    if labellist != None:
        labels = utils.readtextfile(ifile)
        labels = [x.rstrip('\n') for x in labels]
        labels.sort()
        for i in len(labels):
            for fname in os.listdir(labels[i]):
                if is_image_file(fname):
                    labels.append(os.path.split(classes[i]))

    return images, labels
コード例 #2
0
ファイル: folderlist.py プロジェクト: mikewlange/nsga-net
def make_dataset(classlist):
    filename = '/tmp/folderlist.pkl'
    if utils.file_exists(filename):
        print("loading from cache")
        pickle_load = pickle.load(open(filename, "rb"))
        images = pickle_load["images"]
        labels = pickle_load["labels"]
    else:
        print("cache not found, generating cache, this will take a while")
        images = []
        labels = []
        classes = utils.readtextfile(classlist)
        classes = [x.rstrip('\n') for x in classes]
        classes.sort()

        for index in range(len(classes)):
            for fname in os.listdir(classes[index]):
                if is_image_file(fname):
                    fname = os.path.join(classes[index], fname)
                    images.append(fname)
                    labels.append(index)

        pickle_save = {"images": images, "labels": labels}
        pickle.dump(pickle_save, open(filename, "wb"))
    return images, labels
コード例 #3
0
ファイル: h5pydataloader.py プロジェクト: zhoufengfan/DebFace
    def __init__(self,
                 ifile,
                 root=None,
                 split=1.0,
                 transform=None,
                 loader='loader_image'):

        self.root = root
        self.transform = transform
        if loader is not None:
            self.loader = getattr(loaders, loader)

        self.f_h5py = h5py.File(ifile[0], 'r')

        if ifile[1].endswith('txt'):
            lines = utils.readtextfile(ifile[1])
            imagelist = []
            for x in lines:
                x = x.rstrip('\n')
                filename = os.path.splitext(os.path.basename(x))[0]
                labelname = os.path.basename(os.path.dirname(x))
                temp = [os.path.join(labelname, filename + '.jpg')]
                temp.append(labelname)
                imagelist.append(temp)

        labellist = [x[1] for x in imagelist]

        self.images = imagelist
        self.classname = labellist
        self.classname = list(set(self.classname))
        self.classname.sort()
コード例 #4
0
ファイル: filelist.py プロジェクト: gongsixue/GAC
    def __init__(self,
                 ifile,
                 root=None,
                 split=1.0,
                 transform=None,
                 loader='loader_image'):

        self.ifile = ifile
        self.root = root
        self.split = split
        self.transform = transform
        if loader is not None:
            self.loader = getattr(loaders, loader)

        if ifile is not None:
            if ifile.endswith('txt'):
                lines = utils.readtextfile(ifile)
                imagelist = []
                for x in lines:
                    x = x.rstrip('\n')
                    filename = os.path.splitext(os.path.basename(x))[0]
                    file_ext = os.path.splitext(os.path.basename(x))[1]
                    labelname = os.path.basename(os.path.dirname(x))
                    # temp = [os.path.join(labelname, filename + file_ext)]
                    temp = [x]
                    temp.append(labelname)
                    imagelist.append(temp)

                labellist = [x[1] for x in imagelist]

        else:
            imagelist = []

        if (self.split < 1.0) & (self.split > 0.0):
            if len(imagelist) > 0:
                imagelist = shuffle(imagelist, labellist)
                num = math.floor(self.split * len(imagelist))
                self.images = imagelist[0:num]
            else:
                self.images = []

        elif self.split == 1.0:
            if len(imagelist) > 0:
                self.images = imagelist
            else:
                self.images = []
            if len(labellist) > 0:
                self.classname = labellist
            else:
                self.classname = []

        self.classname = list(set(self.classname))
        self.classname.sort()
コード例 #5
0
    def __init__(self,
                 trainfile,
                 testfile,
                 split_train=1.0,
                 split_test=0.0,
                 train=True,
                 transform_train=None,
                 transform_test=None,
                 loader_train=loaders.loader_numpy,
                 loader_test=loaders.loader_numpy):

        # TODO: Split_train is not currently used. Either make use of it or
        # delete it.
        self.trainfile = trainfile
        self.testfile = testfile
        self.train = train
        self.split_test = split_test
        self.split_train = split_train
        self.transform_test = transform_test
        self.transform_train = transform_train

        self.loader_train = loader_train
        self.loader_test = loader_test

        self.preload = False

        if loader_train == 'image':
            self.loader_train = loaders.loader_image
        if loader_train == 'torch':
            self.loader_train = loaders.loader_torch
        if loader_train == 'numpy':
            self.loader_train = loaders.loader_numpy
        if loader_train == 'h5py':
            self.loader_train = loaders.loader_h5py

        if loader_test == 'image':
            self.loader_test = loaders.loader_image
        if loader_test == 'torch':
            self.loader_test = loaders.loader_torch
        if loader_test == 'numpy':
            self.loader_test = loaders.loader_numpy
        if loader_test == 'h5py':
            self.loader_test = loaders.loader_h5py

        if trainfile is not None:
            trainlist = utils.readtextfile(trainfile)
            trainlist = [x.rstrip('\n') for x in trainlist]
        else:
            trainlist = []

        if testfile is not None:
            testlist = utils.readtextfile(testfile)
            testlist = [x.rstrip('\n') for x in testlist]
        else:
            testlist = []

        if len(trainlist) == len(testlist):
            shuffle(testlist, trainlist)

        if len(trainlist) > 0 and len(testlist) == 0:
            shuffle(trainlist)

        if len(testlist) > 0 and len(trainlist) == 0:
            shuffle(testlist)

        if (self.split_train < 1.0) & (self.split_test > 0.0):
            if len(trainlist) > 0:
                num = math.floor(self.split_train * len(trainlist))
                self.image_train = trainlist[0:num]
            if len(testlist) > 0:
                num = math.floor(self.split_train * len(testlist))
                self.image_test = testlist[num + 1:len(testlist)]

        elif self.split_train == 1.0:
            if len(trainlist) > 0:
                self.image_train = trainlist
            else:
                raise NotImplementedError("Data not found")

        elif self.split_test == 1.0:
            if len(testlist) > 0:
                self.image_test = testlist

        if self.preload is True:
            self.image_train_data = []
            for i in self.image_train:
                self.image_train_data.append(self.loader_train(i))
コード例 #6
0
    def __init__(self, filler_images, block_sizes=[25, 35, 45, 55, 65, 75, 85, 95, 105, 115]):

        self.block_sizes = block_sizes
        self.toTensor = torchvision.transforms.ToTensor()
        self.filler_image_list = [x.rstrip('\n') for x in utils.readtextfile(filler_images)]
        assert (len(self.filler_image_list) > 0)
コード例 #7
0
ファイル: filelist.py プロジェクト: mikewlange/nsga-net
    def __init__(self,
                 ifile,
                 lfile=None,
                 split_train=1.0,
                 split_test=0.0,
                 train=True,
                 transform_train=None,
                 transform_test=None,
                 loader_input='image',
                 loader_label='torch'):

        self.ifile = ifile
        self.lfile = lfile
        self.train = train
        self.split_test = split_test
        self.split_train = split_train
        self.transform_test = transform_test
        self.transform_train = transform_train

        if loader_input == 'image':
            self.loader_input = loaders.loader_image
        if loader_input == 'torch':
            self.loader_input = loaders.loader_torch
        if loader_input == 'numpy':
            self.loader_input = loaders.loader_numpy

        if loader_label == 'image':
            self.loader_label = loaders.loader_image
        if loader_label == 'torch':
            self.loader_label = loaders.loader_torch
        if loader_label == 'numpy':
            self.loader_label = loaders.loader_numpy

        if ifile is not None:
            imagelist = utils.readtextfile(ifile)
            imagelist = [x.rstrip('\n') for x in imagelist]
        else:
            imagelist = []

        if lfile is not None:
            labellist = utils.readtextfile(lfile)
            labellist = [x.rstrip('\n') for x in labellist]
        else:
            labellist = []

        if len(imagelist) == len(labellist):
            shuffle(imagelist, labellist)

        if len(imagelist) > 0 and len(labellist) == 0:
            shuffle(imagelist)

        if len(labellist) > 0 and len(imagelist) == 0:
            shuffle(labellist)

        if (self.split_train < 1.0) & (self.split_train > 0.0):
            if len(imagelist) > 0:
                num = math.floor(self.split_train * len(imagelist))
                self.images_train = imagelist[0:num]
                self.images_test = imagelist[num + 1:len(imagelist)]
            else:
                self.images_test = []
                self.images_train = []

            if len(labellist) > 0:
                num = math.floor(self.split * len(labellist))
                self.labels_train = labellist[0:num]
                self.labels_test = labellist[num + 1:len(labellist)]
            else:
                self.labels_test = []
                self.labels_train = []

        elif self.split_train == 1.0:
            if len(imagelist) > 0:
                self.images_train = imagelist
            else:
                self.images_train = []
            if len(labellist) > 0:
                self.labels_train = labellist
            else:
                self.labels_train = []

        elif self.split_test == 1.0:
            if len(imagelist) > 0:
                self.images_test = imagelist
            else:
                self.images_test = []
            if len(labellist) > 0:
                self.labels_test = labellist
            else:
                self.labels_test = []