コード例 #1
0
def dijkstra(G, s):
    """no negative edge"""
    init_single_source(G, s)

    S = {}
    Q = []  # min-priority queue
    # added to conditionally push node to Q
    seen = {}
    c = count()

    pop = heappop
    push = heappush

    push(Q, (s.d, next(c), s))

    while Q:
        dist, _, u = pop(Q)
        if u in S:
            continue
        # shortest path for 'u' are calculated over before checking adj
        S[u] = dist
        for v in G.adj[u]:
            w = G.adj[u][v].get('w', 1)
            uv_dist = dist + w
            if v not in S and (v not in seen or uv_dist < seen[v]):
                relax(u, v, w)
            push(Q, (v.d, next(c), v))
    return S
コード例 #2
0
def dag_shortest_path(G, s):
    """no cycle"""
    vertices_sorted = topological_sort(G)
    init_single_source(G, s)

    for u in vertices_sorted:
        for v in G.adj[u]:
            relax(u, v, G.adj[u][v]['w'])
コード例 #3
0
 def dijkstra(self, g, s):
     initialize_single_source(g, s)
     S = []
     Q = [v for v in g.get_vertices()]
     while len(Q):
         u = extract_min(Q)
         u.set_visitado()
         S.append(u)
         for v in u.get_vertices_adjacentes():
             if v.get_visitado():
                 continue
             relax(u, v)
コード例 #4
0
    def bellman_ford(self, g, s):
        initialize_single_source(g, s)
        for u in g.get_vertices():
            for u, v in g.get_arestas():
                if v.get_visitado():
                    continue
                relax(u, v)

        for u, v in g.get_arestas():
            if v.get_distancia() > u.get_distancia() + u.get_peso(v):
                return False

        return True
コード例 #5
0
 def simulate(self,
              sim_index: int,
              seed: int = 9001) -> Tuple[int, float, float]:
     """
     Run full MCMC simulation from start_temp to end_temp.
     Be sure to save the best (lowest-energy) structure, so you can access it after.
     It is also a good idea to track certain variables during the simulation (temp, energy, and more).
     :param sim_index: simulation index
     :param seed: int
     :return: log information
     """
     random.seed(seed)
     log = {"temperature": [], "energy": []}
     while True:
         if self.step():
             # store best pdb
             sim_path, log_folder_path, sim_index = self.storeSim(
                 self.protein, log, sim_index)
             # calculate relaxed, cd to the folder!!
             cur_dir = os.getcwd()
             os.chdir(sim_path)
             protein, rmsd, score = utils.relax("best.pdb", "target.pdb")
             os.chdir(cur_dir)
             break
         else:
             # keep track of log
             log['temperature'].append(self.temp)
             log['energy'].append(self.compute_energy())
     return sim_index, score, rmsd
コード例 #6
0
def bellman_ford(G, s):
    """no negative cycle"""
    init_single_source(G, s)

    # for every node in G
    for u in G.node[:-1]:
        # for every edge in G
        for u, vs in G.adj.items():
            for v in vs:
                w = G.adj[u][v]['w']
                relax(u, v, w)

    for u in G.node:
        for v in G.adj[u]:
            w = G.adj[u][v]['w']
            if v.d > u.d + w:  # when w is negative
                print("Error", u, v, w)
                return False
    return True
コード例 #7
0
ファイル: main.py プロジェクト: keyes-timothy/classes
def main():
    #Read in arguments from the command line
    parser = argparse.ArgumentParser(
        description='Performs ab initio protein structure prediction')
    parser.add_argument('--fasta',
                        help='name of the fasta file containing the sequence')
    parser.add_argument(
        '--logdir', help='directory to save all log files',
        default='.')  #changed so does not have the / afterwards
    parser.add_argument('--nsims',
                        type=int,
                        help='number of simulations',
                        default=1)
    parser.add_argument('--nfrags',
                        type=int,
                        help='number of fragments to sample at each iteration',
                        default=3)
    parser.add_argument('--anneal_rate',
                        type=float,
                        help='temperature annealing parameter',
                        default=0.999)

    args = parser.parse_args()

    #load sequence from fasta file
    my_file = open(args.fasta)
    my_sequence = my_file.readlines()
    my_sequence = my_sequence[1].strip()
    my_file.close()

    #initialize protein into extended conformation
    my_protein = Protein(sequence=my_sequence)

    #set up FragmentSets for later use
    protein_name = args.fasta[:-6]
    fragfile_9 = protein_name + '_9mers.frag'
    rmsdfile_9 = protein_name + '_9mers.rmsd'
    fragment_set_9mer = FragmentSet(fragfile_9, rmsdfile_9)

    fragfile_3 = protein_name + '_3mers.frag'
    rmsdfile_3 = protein_name + '_3mers.rmsd'
    fragment_set_3mer = FragmentSet(fragfile_3, rmsdfile_3)

    #create lists for saving certain information about each simulation
    sim_numbers = []
    sim_rmsds = []
    sim_energies = []
    sim_proteins = []

    #loop through 10 sims
    for sim_number in range(1, args.nsims + 1):

        #create FragmentSampler object and run coarse simulation with 9mers
        coarse_sampler = MCMCSampler(my_protein,
                                     fragment_set_9mer,
                                     nmers=9,
                                     start_temp=100,
                                     end_temp=1,
                                     nfrags=3,
                                     anneal_rate=args.anneal_rate)
        coarse_result = coarse_sampler.simulate()

        #create FragmentSampler object and run refinement simulation with 3mers
        fine_sampler = MCMCSampler(coarse_sampler.best_protein,
                                   fragment_set_3mer,
                                   nmers=3,
                                   start_temp=1,
                                   end_temp=0.1,
                                   nfrags=3,
                                   anneal_rate=args.anneal_rate)
        fine_result = fine_sampler.simulate()

        #save the final structure from the simulation
        fine_sampler.best_protein.save_pdb(filename='best.pdb')

        #save a log_file from the simulation
        total_result = pd.concat([
            coarse_result, fine_result
        ])  #might need some fixing depending on what the quiz asks for
        total_result.to_csv(
            (args.logdir + '/sim_' + str(sim_number) + '_log.txt'), sep='\t')

        #relax the simulated structure
        relaxed_protein, final_rmsd, final_energy = utils.relax(
            pdb='best.pdb', native=args.fasta.split(sep='.')[0] + '.pdb')

        #log some parameters...sim_number, energy, rmsd
        sim_numbers.append(sim_number)
        sim_rmsds.append(final_rmsd)
        sim_energies.append(final_energy)
        sim_proteins.append(relaxed_protein)

    #return sim log
    sim_log = pd.DataFrame(list(zip(sim_numbers, sim_energies, sim_rmsds)),
                           columns=['sim_number', 'energy', 'rmsd'])
    sim_log.to_csv(
        (args.logdir + '/simulation_summary.txt'), sep='\t', index=False
    )  #may need to be tweaked, i.e. removing indices in first column