コード例 #1
0
    def _get_activations_for_batch(self,
                                   list_of_seqs,
                                   custom_tensor_to_retrieve=None):
        """Gets activations for each sequence in list_of_seqs.

      [
        [activation_1, activation_2, ...] # For list_of_seqs[0]
        [activation_1, activation_2, ...] # For list_of_seqs[1]
        ...
      ]

    In the case that the activations are the normalized probabilities that a
    sequence belongs to a class, entry `i, j` of
    `inferrer.get_activations(batch)` contains the probability that
    sequence `i` is in family `j`.

    Args:
      list_of_seqs: list of strings, with characters that are amino acids.
      custom_tensor_to_retrieve: string name for a tensor to retrieve, if unset
        uses default for signature.

    Returns:
      np.array of floats containing the value from fetch_op.
    """
        one_hots = [utils.residues_to_one_hot(seq) for seq in list_of_seqs]
        padded_one_hots = utils.make_padded_np_array(one_hots)
        tensor_name = custom_tensor_to_retrieve or self._fetch_tensor_name
        with self._graph.as_default():
            return self._sess.run(
                tensor_name, {
                    self._signature.inputs[protein_dataset.SEQUENCE_KEY].name:
                    padded_one_hots,
                    self._signature.inputs[protein_dataset.SEQUENCE_LENGTH_KEY].name:
                    np.array([len(s) for s in list_of_seqs])
                })
コード例 #2
0
 def testSparseToOneHot(self):
     seq = 'AY'
     expected_output = [[
         1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0.
     ],
                        [
                            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
                            0., 0., 0., 0., 0., 0., 0., 1.
                        ]]
     self.assertListEqual(expected_output,
                          utils.residues_to_one_hot(seq).tolist())