コード例 #1
0
def latex_mean_low_up(mean, low, up, sig=2):
    #latexstr = "%.10f_{-%.10f}^{+%.10f}" % (mean,low,up)
    f_low, round_to1 = utils.round_sig(low, return_round_to=True, sig=sig)
    f_up, round_to2 = utils.round_sig(up, return_round_to=True, sig=sig)
    round_to = max(round_to1, round_to2)
    f_mean = round(mean, round_to)
    latexstr = "$%s_{-%s}^{+%s}$" % (f_mean, f_low, f_up)
    return latexstr
コード例 #2
0
def pheno_pathway_assoc_row_generator(): # doesn't output primary key, let's sqlite3 auto-increment instead
    for i, (phecode, genesettype) in enumerate(itertools.product(phecodes, genesettypes)):
        phecode_id = phecode_ids[phecode]
        filename = 'PheCode_{}_{}.wConditional.txt.gz'.format(phecode, genesettype)
        print(i, filename)
        with read_maybe_gzip(pheno_dir_path / filename, 'rt') as f:
            for i, line in enumerate(f):
                try:
                    parts = line.split()
                    if len(parts) == 6:
                        # This is the normal format, with 2 unused columns
                        name, url, pval_string, _, selected_genes_string, _ = line.split()
                    elif len(parts) == 4:
                        # This is the trimmed format without the 2 unused columns
                        name, url, pval_string, selected_genes_string = line.split()
                    else:
                        raise Exception("wrong number of columns")
                    if pval_string == 'NA' and selected_genes_string == 'NA':
                        # I don't know why these lines exist but there's a lot of them.
                        continue
                    selected_genes = selected_genes_string.split(',')
                    try:
                        assert name in pathways, line
                        assert pathways[name]['url'] == url, line
                        assert 0 <= float(pval_string) <= 1, line
                        assert 1 <= len(selected_genes) < 20e3, line
                        assert all(g in pathways[name]['genes'] for g in selected_genes), line
                    except Exception: raise Exception(line)
                    pval = round_sig(float(pval_string), 3)
                    yield (phecode_id, pathway_ids[name], pval, selected_genes_string)
                except Exception as exc:
                    raise Exception("Failed on line {} of file {} which is {}".format(i, pheno_dir_path/filename, repr(line))) from exc
コード例 #3
0
def pheno_gene_assoc_row_generator():
    for phecode, pheno_id in phecode_ids.items():
        print(' - reading pheno#{}: {}'.format(pheno_id, phecode))
        filepath = '../input_data/genes/OUTF_PheCode_{}.txt.gz'.format(phecode)
        with read_maybe_gzip(filepath, 'rt') as f:
            delimiter = '\t' if '\t' in next(f) else ' '
        with read_maybe_gzip(filepath, 'rt') as f:
            for i, row in enumerate(csv.reader(f, delimiter=delimiter)):
                try:
                    if len(row) == 2:
                        gene, pval_str = row
                    elif len(row) == 8:
                        gene, pval_str = row[0], row[4]
                    else:
                        raise Exception(
                            "Wrong number of parts in line {} of file {} which is {}"
                            .format(i, filepath, repr(row)))
                except ValueError as exc:
                    raise Exception(
                        "Failed on line {} of file {} which is {}".format(
                            i, filepath, repr(row))) from exc
                if gene in gene_ids and pval_str != "NA":
                    pval = round_sig(float(pval_str), 3)
                    assert 0 <= pval <= 1
                    yield (pheno_id, gene_ids[gene], pval)
コード例 #4
0
def latex_mean(mean, std, sig=2):
    #latexstr = "%.10f_{-%.10f}^{+%.10f}" % (mean,low,up)
    f_std, round_to = utils.round_sig(std, return_round_to=True, sig=sig)
    f_mean = round(mean, round_to)
    latexstr = "$%s \pm %s$" % (f_mean, f_std)
    return latexstr
コード例 #5
0
ファイル: main.py プロジェクト: iancraz/TC-TP05
    text_file = open("output.txt", "w")

    print("-------------")
    if min_n == -1:
        print("gd = ", gd, " not found")
    else:
        print("t0 = ", t0, "n =", min_n)
        # Ahora checkeamos si cumple la condicion

        b.calcular(min_n)

        mag, pha = b.evaluarAproximacion(fa)
        at = -mag

        mag, pha = b.evaluarAproximacion(fp)
        at_fp = -mag

        gd = b.evaluarRetardoDeGrupo(fp, fp * 0.001) * 1000

        if at > 40:
            print("Gd(fp) = ", round_sig(gd, 4), "ms At(fp) = ",
                  round_sig(at_fp, 4), " At(fa) = ", round_sig(at, 4),
                  " Cumple")
            print("H(s) = ", etapas.getFacto2orderExpression(b.tf))
            print("coef = ", b.coef)
        else:
            print("Gd(fp) = ", round_sig(gd, 4), " ms At(fp) = ",
                  round_sig(at_fp, 4), "At(fa) = ", round_sig(at, 4))
            print("H(s) = ", etapas.getFacto2orderExpression(b.tf))
            print("coef = ", b.coef)
コード例 #6
0
 def plot_moments(self,
                  title='moment diagram',
                  figsize=(10, 4),
                  scale=1,
                  steps=10,
                  fontsize=12,
                  round=3):
     scale = scale * np.max(self.elements['L']) / 3 / np.max(
         np.abs(self.moment))
     relativeOffset = scale * np.max(self.elements['L'])
     fig, ax = plt.subplots(figsize=figsize)
     ax.grid(which='major', linestyle=':', linewidth='0.5', color='black')
     element_summary = []
     for i in range(len(self.elements)):
         #elements
         x_el = [
             utils.df_value(self.nodes, self.elements['n1'][i], 'name',
                            'x'),
             utils.df_value(self.nodes, self.elements['n2'][i], 'name', 'x')
         ]
         y_el = [
             utils.df_value(self.nodes, self.elements['n1'][i], 'name',
                            'y'),
             utils.df_value(self.nodes, self.elements['n2'][i], 'name', 'y')
         ]
         ax.plot(x_el, y_el, '-', linewidth=3, marker='o', color='black')
         #moments
         x1, x2, y1, y2 = elmCoord(self.elements, self.nodes, i)
         s = (y2 - y1) / self.elements['L'][i]
         c = (x2 - x1) / self.elements['L'][i]
         if self.elements['name'][i] in self.forces_distributed[
                 'element'].values:
             x_mom = [x_el[0]]
             y_mom = [y_el[0]]
             moments = []
             L = self.elements['L'][i]
             steps = steps
             w1 = utils.df_value(self.forces_distributed,
                                 self.elements['name'][i], 'element', 'n1')
             w2 = utils.df_value(self.forces_distributed,
                                 self.elements['name'][i], 'element', 'n2')
             for j in range(0, steps + 1):
                 x = L / steps * j
                 w2_temp = w1 + (w2 - w1) * x / L
                 # area=np.trapz([w1,w2_temp], x=[0,L])
                 # leverarm = w2_temp-utils.centroidX([[0,w1],[x,w2_temp]])
                 area = (w1 + w2_temp) / 2 * x
                 if area != 0:
                     leverarm = (w1 * x**2 / 2 +
                                 (w2_temp - w1) * x**2 / 6) / area
                 else:
                     leverarm = 0
                 moment = -(-self.moment[i * 2] + self.shear[i * 2] * x +
                            area * leverarm)  #upsidedown moments
                 moments.append(moment)
                 x_mom.append(
                     utils.df_value(self.nodes, self.elements['n1'][i],
                                    'name', 'x') + x + moment * s * scale)
                 y_mom.append(
                     utils.df_value(self.nodes, self.elements['n1'][i],
                                    'name', 'y') + moment * c * scale)
             # x_mom.append(utils.df_value(self.nodes,self.elements['n2'][i],'name','x')+s*self.moment[i*2+1]*scale)
             # y_mom.append(utils.df_value(self.nodes,self.elements['n2'][i],'name','y')+c*self.moment[i*2+1]*scale)
             x_mom.append(x_el[1])
             y_mom.append(y_el[1])
             ax.text(x_mom[1] + relativeOffset * c,
                     y_mom[1] + utils.matchSign(relativeOffset, y_mom[1]),
                     utils.round_sig(moments[0], round),
                     fontsize=fontsize)
             ax.text(x_mom[-2] - 4 * relativeOffset * c,
                     y_mom[-2] + utils.matchSign(relativeOffset, y_mom[-2]),
                     utils.round_sig(moments[-1], round),
                     fontsize=fontsize)
             if utils.maxAbs(moments[0], moments[-1]) > 0:
                 indice = min(
                     (val, idx) for (idx, val) in enumerate(moments))[1]
             else:
                 indice = max(
                     (val, idx) for (idx, val) in enumerate(moments))[1]
             ax.text(x_mom[indice + 1],
                     y_mom[indice] +
                     utils.matchSign(relativeOffset, y_mom[indice + 1]),
                     utils.round_sig(moments[indice], round),
                     fontsize=fontsize)
             element_summary.append([
                 self.elements['name'][i],
                 utils.round_sig(moments[0], round),
                 utils.round_sig(moments[-1], round),
                 utils.round_sig(moments[indice], round), self.shear[i * 2],
                 self.shear[i * 2 + 1]
             ])
         else:
             x_mom = [
                 x_el[0],
                 utils.df_value(self.nodes, self.elements['n1'][i], 'name',
                                'x') + s * self.moment[i * 2] * scale,
                 utils.df_value(self.nodes, self.elements['n2'][i], 'name',
                                'x') - s * self.moment[i * 2 + 1] * scale,
                 x_el[1]
             ]
             y_mom = [
                 y_el[0],
                 utils.df_value(self.nodes, self.elements['n1'][i], 'name',
                                'y') + c * self.moment[i * 2] * scale,
                 utils.df_value(self.nodes, self.elements['n2'][i], 'name',
                                'y') - c * self.moment[i * 2 + 1] * scale,
                 y_el[1]
             ]
             ax.text(x_mom[1] + relativeOffset * c,
                     y_mom[1] + utils.matchSign(relativeOffset, y_mom[1]),
                     utils.round_sig(self.moment[i * 2], round),
                     fontsize=fontsize)
             ax.text(x_mom[-2] - 4 * relativeOffset * c,
                     y_mom[-2] + utils.matchSign(relativeOffset, y_mom[-2]),
                     utils.round_sig(self.moment[i * 2 + 1], round),
                     fontsize=fontsize)
             element_summary.append([
                 self.elements['name'][i],
                 utils.round_sig(self.moment[i * 2], round),
                 utils.round_sig(self.moment[i * 2 + 1], round),
                 (utils.round_sig(self.moment[i * 2], round) +
                  utils.round_sig(self.moment[i * 2 + 1], round)) / 2,
                 self.shear[i * 2], self.shear[i * 2 + 1]
             ])
         ax.plot(x_mom, y_mom, '-', linewidth=2, marker='', color='blue')
     self.element_summary = pd.DataFrame(
         element_summary, columns=['name', 'm1', 'm2', 'mMid', 'S1', 'S2'])
     plt.axis('equal')
     ax.set_title(title)
     plt.show()