import cPickle import logging from blocks.serialization import load as load_parameters from blocks.model import Model from datasets import parrot_stream from model import Parrot from utils import (attention_plot, sample_parse, create_animation, numpy_one_hot) from generate import generate_wav logging.basicConfig() data_dir = os.environ['FUEL_DATA_PATH'] args = sample_parse() with open(os.path.join(args.save_dir, 'config', args.experiment_name + '.pkl')) as f: saved_args = cPickle.load(f) assert saved_args.dataset == args.dataset if args.use_last: params_mode = 'last_' else: params_mode = 'best_' args.samples_name = params_mode + args.samples_name with open(
""" import numpy import os import cPickle import logging from blocks.serialization import load_parameters from blocks.model import Model from model import Scribe from theano import function from utils import char2code, sample_parse, full_plot logging.basicConfig() parser = sample_parse() args = parser.parse_args() with open(os.path.join(args.save_dir, 'config', args.experiment_name + '.pkl')) as f: saved_args = cPickle.load(f) with open( os.path.join(args.save_dir, "pkl", "best_" + args.experiment_name + ".tar"), 'rb') as src: parameters = load_parameters(src) scribe = Scribe(k=saved_args.num_mixture, rec_h_dim=saved_args.rnn_size, att_size=saved_args.size_attention, num_letters=saved_args.num_letters,