コード例 #1
0
def download_submissoes(submissoes_url, output_path):
    print 'Getting submissions from: %s' % submissoes_url
    # request html
    html = utils.request_get(submissoes_url)
    # save last table as dataframe
    df = utils.get_last_table(html)
    print 'Saving as csv at %s' % output_path
    # save df as csv
    utils.save_as_csv(df, output_path)
コード例 #2
0
def download_scoreboard(scoreboard_url, output_path):
    print 'Getting scoreboard from: %s' % scoreboard_url
    # request html
    html = utils.request_get(scoreboard_url)
    # save last table as dataframe
    df = utils.get_last_table(html)
    print 'Saving as csv at %s' % output_path
    # save df as csv
    utils.save_as_csv(df, output_path)
コード例 #3
0
def download_regions_champions_data(url, output_path_regional_champions):
    print 'Getting region champions from: %s' % url
    # request html
    html = utils.request_get(url)
    soup = BeautifulSoup(html, 'lxml')

    df_region_champs = generate_dataframes(url, soup,
                                           output_path_regional_champions)

    print 'Saving as csv at %s' % output_path_regional_champions
    utils.save_as_csv(df_region_champs, output_path_regional_champions)
コード例 #4
0
def download_estatisticas(statistics_url, output_path):
    print 'Getting statistics from: %s' % statistics_url
    # request html
    html = utils.request_get(statistics_url)

    # save as dataframe
    # ignoreing first table because it is just the page header
    for df in pd.read_html(html)[1:len(pd.read_html(html))]:
        title = df.loc[0, 0].lower().replace(' ', '_')
        print 'Saving as csv at %s' % output_path + title + '.csv'
        # save df as csv
        utils.save_as_csv(df, output_path + title + '.csv')
コード例 #5
0
def download_competidor_data(url, output_path_competitor, output_path_coach):
    global position
    position = 1
    print 'Getting competitors from: %s' % url
    # request html
    html = utils.request_get(url)
    soup = BeautifulSoup(html, 'lxml')

    df_competitors, df_coaches = generate_dataframes(url, soup,
                                                     output_path_competitor,
                                                     output_path_coach)

    print 'Saving as csv at %s' % output_path_competitor
    utils.save_as_csv(df_competitors, output_path_competitor)

    print 'Saving as csv at %s' % output_path_coach
    utils.save_as_csv(df_coaches, output_path_coach)
コード例 #6
0
ファイル: solve.py プロジェクト: clreda/patterning-scenario
def call_run(modelname="toy", plot_trajectories=False, verbose=True):
    names = map(lambda x: modelname + "/" + x,
                [default_model, default_observations])
    params_in = read_files(names[0], names[1])
    try:
        res = pattern_solver(params_in, verbose=verbose)
    except ValueError:
        print("ERROR: Something occurred during execution")
        return (None)
    if (not res[0]):
        return (None)
    ## Dump pattern + trajectory matrices as CSV files
    files = ["pattern_matrix", "trajectories", "grns"]
    ## Avoid special characters such as whitespaces
    modelname = concat(modelname.split(" "), "-")
    diffusion_rate = params_in[3]["diffusion-rate"]
    for model_id in range(len(res[0])):
        pattern_matrix, trajectories, grns = res[0][model_id]
        patterns = res[1]
        multi_binary_dict = res[2]
        bvectors = res[3]
        for j in range(len(files)):
            print("\nMSG: Saving \'" + files[j] + "\' object from solution #" +
                  str(model_id + 1) + " of model " + modelname)
            save_as_csv(res[0][model_id][j], model_id, modelname, files[j],
                        patterns, multi_binary_dict, bvectors)
        ## Visualization of the solution
        model_to_igraph(pattern_matrix,
                        model_id,
                        modelname,
                        patterns,
                        verbose=verbose)
        if (plot_trajectories):
            to_plottable_matrix(trajectories, model_id, modelname,
                                multi_binary_dict)
    print("\nMSG: Results saved as csv files!")
    return (None)
コード例 #7
0
from data import dataprocessor
from utils import save_as_csv
from tests import feature_selection

# --------------------------------------------------------------------------------
# This file can be ran to initialize datasets and perform feature analysis
# --------------------------------------------------------------------------------

if __name__ == '__main__':

    # Preprocess raw data to desired format
    interim = dataprocessor.process_raw_data()
    save_as_csv(interim, 'data/datasets/interim/game_stats.csv')

    # Create datasets with simple game statistics
    simple_train_data, simple_test_data = dataprocessor.get_simplified_data(
        interim)
    save_as_csv(simple_train_data,
                'data/datasets/processed/simple_train_data.csv')
    save_as_csv(simple_test_data,
                'data/datasets/processed/simple_test_data.csv')

    # Create datasets with advanced game statistics
    adv_train_data, adv_test_data, full_data = dataprocessor.get_advanced_data(
        interim)
    save_as_csv(adv_train_data, 'data/datasets/processed/adv_train_data.csv')
    save_as_csv(adv_test_data, 'data/datasets/processed/adv_test_data.csv')
    save_as_csv(full_data, 'data/datasets/processed/full_data.csv')

    # Analyze feature importance
    # If you want to select different features for your optimized models based on the analysis,
コード例 #8
0
                url = 'http://s.wanfangdata.com.cn/periodical?q=%28%28{}%29%20%29%20Date%3A{}-{}&s=50'.format(
                    quote('刊名:{}'.format(periodicalName)), year, year)
                response = get_page(url)
                total_number = get_page_number(response)
                print(periodicalName, '共有', total_number, '页')

                for page in range(1, total_number + 1):
                    print("当前爬取《" + periodicalName + "》第" + str(year) + "年" +
                          "第" + str(page) + "页")
                    url = 'http://s.wanfangdata.com.cn/periodical?q=%28%28{}%29%20%29%20Date%3A{}-{}&p={}&s=50'.format(
                        quote('刊名:{}'.format(periodicalName)), year, year,
                        str(page))
                    attempts = 0
                    success = False
                    while attempts < 10 and not success:
                        try:
                            response = get_page(url)
                            utils.save_as_csv(get_content(response))
                            time.sleep(2 + random.randint(0, 9) * 0.1)
                            success = True
                        except:
                            print("----------爬取错误,当前爬取至" + periodicalName +
                                  "第" + str(page) + "页,正在重试:" + str(attempts) +
                                  "---------")
                            attempts += 1
                    if attempts == 10:
                        txtfile = open('./log.txt', 'a', encoding='utf-8')
                        txtfile.write(periodicalName + '第' + str(page) +
                                      '页读取错误 \n')
                        txtfile.close()
コード例 #9
0
 def save_as_csv(self):
     fieldnames = [
         'memory', 'vCPUs', 'transfer', 'disk', 'hour_price', 'month_price'
     ]
     save_as_csv('digital_items.csv', self.items, fieldnames)
コード例 #10
0
 def save_as_csv(self):
     fieldnames = ['storage', 'cpu', 'memory', 'bandwith', 'price']
     save_as_csv('vultr_items.csv', self.items, fieldnames)
コード例 #11
0
ファイル: solve.py プロジェクト: clreda/patterning-scenario
def call_predict(modelname,
                 model_id,
                 q0,
                 grn,
                 qf=None,
                 solmax=None,
                 plot_trajectories=False,
                 verbose=True):
    print("\n-----------\nMODEL = " + modelname)
    print("Solution " +
          ifthenelse(model_id < 0, "\'no pattern selection\'", "#" +
                     str(model_id + 1)) + "\n-----------")
    from numpy import shape, zeros, reshape
    names = map(lambda x: modelname + "/" + x,
                [default_model, default_observations])
    params_in = read_files(names[0], names[1], return_phenotypes=True)
    ## Delete previous observations
    del params_in[-3]
    ## Delete previous fix points
    del params_in[-3]
    nfields = len(params_in[4])
    if (not (nfields == len(q0))):
        print("ERROR: Wrong initial condition vector length: " + str(len(q0)) +
              " instead of " + str(nfields))
        return (None)
    if (not (nfields == len(grn))):
        print("ERROR: Wrong initial GRN vector length: " + str(len(q0)) +
              " instead of " + str(nfields))
        return (None)
    Patterns = params_in[-1]
    patterning_step = params_in[2]["patterning_step"]
    k = params_in[2]["nsteps"]
    nsteps = ifthenelse(patterning_step == 0, k, min(patterning_step, k))
    ## Add observations for initial states
    Observations = filter_nones([
        ifthenelse(
            len(q0[id_field]) > 0,
            {
                "name": "Trajectory",
                "step": 0,
                "field": id_field,
                ## name of GRN instead of GRN itself: GRNs.get(di.get("GRN"))
                "GRN": grn[id_field],
                "phenotype": Patterns.get(q0[id_field])
            }) for id_field in range(nfields)
    ])
    ## Add observations for final states
    if (qf):
        Observations += filter_nones([
            ifthenelse(
                len(qf[id_field]) > 0,
                {
                    "name": "Trajectory",
                    "step": k,
                    "field": id_field,
                    ## name of GRN instead of GRN itself: GRNs.get(di.get("GRN"))
                    "GRN": None,
                    "phenotype": Patterns.get(qf[id_field])
                }) for id_field in range(nfields)
        ])
    params_in = params_in[:-2] + [Observations, []] + [params_in[-2]]
    diffusion_rate = params_in[3]["diffusion-rate"]
    if (model_id < 0):
        pattern_matrix = zeros((len(params_in[1]), nsteps))
    else:
        filename = path_to_results + modelname + "_rate=" + str(
            diffusion_rate) + "/"
        filename += "result_" + concat(
            modelname.split("-")) + "_" + str(model_id +
                                              1) + "_pattern_matrix.csv"
        pattern_matrix = np.loadtxt(open(filename, "rb"),
                                    delimiter=",",
                                    skiprows=1)
    print("\n* Pattern matrix:")
    print("t= " +
          concat([str(i) + " " * (3 - len(str(i)) + 1)
                  for i in range(nsteps)]))
    print(pattern_matrix)
    print("\n--- Starting predictions!")
    try:
        res = pattern_solver(params_in,
                             pattern_matrix0=pattern_matrix,
                             solmax=solmax,
                             verbose=True)
    except ValueError:
        print("ERROR: Something occurred during execution")
        return (None)
    if (not res[0]):
        return (None)
    ## Avoid special characters such as whitespaces
    modelname = "prediction_" + concat(modelname.split(" "),
                                       "-") + "_solution=" + str(model_id + 1)
    for model_id in range(len(res[0])):
        _, trajectories, grns = res[0][model_id]
        patterns = res[1]
        multi_binary_dict = res[2]
        bvectors = res[3]
        ## Dump trajectory matrices as CSV files
        print("\nMSG: Saving \'trajectories\' object from solution #" +
              str(model_id + 1) + " of model " + modelname)
        save_as_csv(res[0][model_id][1], model_id, modelname, "trajectories",
                    patterns, multi_binary_dict, bvectors)
        if (plot_trajectories):
            to_plottable_matrix(trajectories, model_id, modelname,
                                multi_binary_dict)
    print("\nMSG: Results saved as csv files!")
    return (None)
コード例 #12
0
    parser.add_argument('--dataset', type=str, default='CIFAR')
    args = vars(parser.parse_args())

    if args['dataset'] == 'CIFAR':
        model = CIFAR_Model()
        train_loader, valid_loader, _, _ = create_loaders(is_train=True,
                                                          is_valid=True,
                                                          is_test=False)
    else:
        model = MNIST_Model()
        train_loader, valid_loader, _, _ = create_loaders(
            which_dataset='MNIST', is_train=True, is_valid=True, is_test=False)

    mask = create_mask(model)

    if args['first_time']:
        torch.save(model.state_dict(), 'environment\\initial_model.pth')
        torch.save(mask.state_dict(), 'environment\\initial_mask.pth')
        save_as_csv(model)
    else:
        model.load_state_dict(torch.load('environment\\model.pth'))
        mask.load_state_dict(torch.load('environment\\mask.pth'))

    criterion, optimizer = create_criterion_optimizer(model)

    value = train(args['epochs'], train_loader, valid_loader, optimizer,
                  criterion, model, mask)

    f = open('wrapping\\result.txt', 'w')
    print(value, file=f, end='')
    f.close()