fisher_single = fisher.copy() # utils.study_prior_tau_on_N_eff(fid, fisher, 'data/' + output_folder, header) np.savetxt( 'data/{}/fisher_mat_joint_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format( output_folder, lmin, lmax, N_det, fsky), fisher_single, header=header) print 'finally how much constraint on parameters without external prior?' print '' fisher_inv = np.linalg.inv(fisher_single) utils.save_cov_matrix( fisher_inv, 'data/{}/param_cov_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format( output_folder, lmin, lmax, N_det, fsky)) np.savetxt( 'data/{}/invetered_sqrt_fisher_joint_lmin={}_lmax={}_ndet={}_fsky={}.txt' .format(output_folder, lmin, lmax, N_det, fsky), np.sqrt(fisher_inv), header=header) print 'fisher=', fisher no_lcdm_parameters = ['massless_neutrinos', 'w', 'omnuh2'] plot_now = ['omnuh2'] excluded_parameters = list(set(no_lcdm_parameters) - set(plot_now)) par_gaps, values, fid, fisher_single = utils.exclude_parameters_from_fisher( excluded_parameters, par_gaps, values, fid, fisher_single)
np.column_stack((dats[lmin_index:lmax_index, 0, 0], no_marginalized_ell)), header=header) np.savetxt('data/{}/marginalized_ell_CMB_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format(output_folder, lmin, lmax, N_det, fsky), np.column_stack((dats[lmin_index:lmax_index, 0, 0], marginalized_ell)), header=header) np.save('data/{}/full_fisher_mat_CMB_lmin={}_lmax={}_ndet={}_fsky={}.npy'.format(output_folder, lmin, lmax, N_det, fsky), fisher_save) np.savetxt('data/{}/ell_indeces_CMB_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format(output_folder, lmin, lmax, N_det, fsky), dats[lmin_index:lmax_index, 0, 0], header=header) # utils.study_prior_tau_on_N_eff(fid, fisher, 'data/' + output_folder, header) print 'finally how much constraint on parameters without prior?' print '' fisher_single = fisher.copy() fisher_inv = np.linalg.inv(fisher_single) utils.save_cov_matrix( fisher_inv, 'data/{}/param_cov_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format(output_folder, lmin, lmax, N_det, fsky)) np.savetxt('data/{}/invetered_sqrt_fisher_CMB_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format(output_folder, lmin, lmax, N_det, fsky), np.sqrt(fisher_inv), header=header) np.savetxt('data/{}/fisher_mat_CMB_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format(output_folder, lmin, lmax, N_det, fsky), fisher_single, header=header) print 'fisher=', fisher utils.print_resume_stat(fisher_single, fid)