コード例 #1
0
def main_batch_from_rgb_detection(output_filename, result_dir=None):
    ps_list = []
    segp_list = []
    center_list = []
    heading_cls_list = []
    heading_res_list = []
    size_cls_list = []
    size_res_list = []
    rot_angle_list = []
    score_list = []

    test_idxs = np.arange(0, len(TEST_DATASET))
    print(len(TEST_DATASET))
    raw_input()
    batch_size = 32
    num_batches = int((len(TEST_DATASET)+batch_size-1)/batch_size)
    
    batch_data_to_feed = np.zeros((batch_size, NUM_POINT, NUM_CHANNEL))
    batch_one_hot_to_feed = np.zeros((batch_size, NUM_CLASS))
    sess, ops = get_model(batch_size=batch_size, num_point=NUM_POINT)
    for batch_idx in range(num_batches):
        print(batch_idx)
        start_idx = batch_idx * batch_size
        end_idx = min(len(TEST_DATASET), (batch_idx+1) * batch_size)
        cur_batch_size = end_idx - start_idx

        batch_data, batch_rot_angle, batch_rgb_prob, batch_one_hot_vec = get_batch(TEST_DATASET, test_idxs, start_idx, end_idx, NUM_POINT, NUM_CHANNEL, from_rgb_detection=True)
        batch_data_to_feed[0:cur_batch_size,...] = batch_data
        batch_one_hot_to_feed[0:cur_batch_size,:] = batch_one_hot_vec
	batch_output, batch_center_pred, batch_hclass_pred, batch_hres_pred, batch_sclass_pred, batch_sres_pred, batch_scores = inference(sess, ops, batch_data_to_feed, batch_one_hot_to_feed, batch_size=batch_size)
        print(batch_hclass_pred.shape, batch_hres_pred.shape)
        print(batch_sclass_pred.shape, batch_sres_pred.shape)
	
        for i in range(cur_batch_size):
            ps_list.append(batch_data[i,...])
            segp_list.append(batch_output[i,...])
            center_list.append(batch_center_pred[i,:])
            heading_cls_list.append(batch_hclass_pred[i])
            heading_res_list.append(batch_hres_pred[i])
            size_cls_list.append(batch_sclass_pred[i])
            size_res_list.append(batch_sres_pred[i,:])
            rot_angle_list.append(batch_rot_angle[i])
            #score_list.append(batch_scores[i] + np.log(batch_rgb_prob[i])) # Combine 3D BOX score and 2D RGB detection score
            score_list.append(batch_rgb_prob[i]) # 2D RGB detection score

    if FLAGS.dump_result:
        save_zipped_pickle([ps_list, segp_list, center_list, heading_cls_list, heading_res_list, size_cls_list, size_res_list, rot_angle_list, score_list], output_filename) 

    # Write detection results for KITTI evaluation
    print(len(ps_list))
    raw_input()
    write_detection_results(result_dir, TEST_DATASET.id_list, TEST_DATASET.type_list, TEST_DATASET.box2d_list, center_list, heading_cls_list, heading_res_list, size_cls_list, size_res_list, rot_angle_list, score_list)
    # Make sure for each frame (no matter if we have measurment for that frame), there is a TXT file
    output_dir = os.path.join(result_dir, 'data')
    to_fill_filename_list = [line.rstrip()+'.txt' for line in open(FLAGS.idx_path)]
    fill_files(output_dir, to_fill_filename_list)
コード例 #2
0
def main_batch(output_filename, result_dir=None):
    ps_list = []
    seg_list = []
    segp_list = []
    center_list = []
    heading_cls_list = []
    heading_res_list = []
    size_cls_list = []
    size_res_list = []
    rot_angle_list = []
    score_list = []

    test_idxs = np.arange(0, len(TEST_DATASET))
    batch_size = 32
    num_batches = int((len(TEST_DATASET)+batch_size-1)/batch_size)

    batch_data_to_feed = np.zeros((batch_size, NUM_POINT, NUM_CHANNEL))
    batch_one_hot_to_feed = np.zeros((batch_size, NUM_CLASS))
    sess, ops = get_model(batch_size=batch_size, num_point=NUM_POINT)
    correct_cnt = 0
    for batch_idx in range(num_batches):
        #if batch_idx == 50: break #TODO: remove this line!!
        print(batch_idx)
        start_idx = batch_idx * batch_size
        end_idx = min(len(TEST_DATASET), (batch_idx+1) * batch_size)
        cur_batch_size = end_idx - start_idx

        batch_data, batch_label, batch_center, batch_hclass, batch_hres, batch_sclass, batch_sres, batch_rot_angle, batch_one_hot_vec = get_batch(TEST_DATASET, test_idxs, start_idx, end_idx, NUM_POINT, NUM_CHANNEL)
        batch_data_to_feed[0:cur_batch_size,...] = batch_data
        batch_one_hot_to_feed[0:cur_batch_size,:] = batch_one_hot_vec
	batch_output, batch_center_pred, batch_hclass_pred, batch_hres_pred, batch_sclass_pred, batch_sres_pred, batch_scores = inference(sess, ops, batch_data_to_feed, batch_one_hot_to_feed, batch_size=batch_size)
        print(batch_hclass_pred.shape, batch_hres_pred.shape)
        print(batch_sclass_pred.shape, batch_sres_pred.shape)
        #raw_input()
        correct_cnt += np.sum(batch_output[0:cur_batch_size,...]==batch_label[0:cur_batch_size,...])
	
        for i in range(cur_batch_size):
            ps_list.append(batch_data[i,...])
            seg_list.append(batch_label[i,...])
            segp_list.append(batch_output[i,...])
            center_list.append(batch_center_pred[i,:])
            heading_cls_list.append(batch_hclass_pred[i])
            heading_res_list.append(batch_hres_pred[i])
            size_cls_list.append(batch_sclass_pred[i])
            size_res_list.append(batch_sres_pred[i,:])
            rot_angle_list.append(batch_rot_angle[i])
            score_list.append(batch_scores[i])
    print("Accuracy: ", correct_cnt / float(len(TEST_DATASET)*NUM_POINT))

    save_zipped_pickle([ps_list, segp_list, center_list, heading_cls_list, heading_res_list, size_cls_list, size_res_list, rot_angle_list, score_list], output_filename) 

    # Write detection results for KITTI evaluation
    write_detection_results(result_dir, TEST_DATASET.id_list, TEST_DATASET.type_list, TEST_DATASET.box2d_list, center_list, heading_cls_list, heading_res_list, size_cls_list, size_res_list, rot_angle_list, score_list)
コード例 #3
0
ファイル: sunrgbd_data.py プロジェクト: atangger/dlProject
def extract_roi_seg_from_rgb_detection(det_folder,
                                       split,
                                       output_filename,
                                       viz,
                                       valid_id_list=None,
                                       type_whitelist=[
                                           'bed', 'table', 'sofa', 'chair',
                                           'toilet', 'desk', 'dresser',
                                           'night_stand', 'bookshelf',
                                           'bathtub'
                                       ]):
    ''' Extract data pairs for RoI point set segmentation from RGB detector outputed 2D boxes.
        
        Input:
            det_folder: contains files for each frame, lines in each file are type -1 -10 -10 xmin ymin xmax ymax ... prob
            split: corresponding to official either trianing or testing
            output_filename: the name for output .pickle file
            valid_id_list: specify a list of valid image IDs
        Output:
            None (will write a .pickle file to the disk)

        Usage: extract_roi_seg_from_rgb_detection("val_result_folder", "training", "roi_seg_val_rgb_detector_0908.pickle")

    '''
    dataset = sunrgbd_object(
        '/home/haianyt/frustum-pointnets/sunrgbd/sunrgbd_data/matlab/SUNRGBDtoolbox/mysunrgbd',
        split)
    det_id_list, det_type_list, det_box2d_list, det_prob_list = read_det_folder(
        det_folder)
    cache_id = -1
    cache = None

    id_list = []
    type_list = []
    box2d_list = []
    prob_list = []
    input_list = []  # channel number = 4, xyz,intensity in rect camera coord
    frustum_angle_list = []  # angle of 2d box center from pos x-axis

    for det_idx in range(len(det_id_list)):
        data_idx = det_id_list[det_idx]
        if valid_id_list is not None and data_idx not in valid_id_list:
            continue
        print('det idx: %d/%d, data idx: %d' %
              (det_idx, len(det_id_list), data_idx))
        if cache_id != data_idx:
            calib = dataset.get_calibration(data_idx)
            pc_upright_depth = dataset.get_depth(data_idx)
            pc_upright_camera = np.zeros_like(pc_upright_depth)
            pc_upright_camera[:, 0:
                              3] = calib.project_upright_depth_to_upright_camera(
                                  pc_upright_depth[:, 0:3])
            pc_upright_camera[:, 3:] = pc_upright_depth[:, 3:]

            img = dataset.get_image(data_idx)
            img_height, img_width, img_channel = img.shape
            pc_image_coord, _ = calib.project_upright_depth_to_image(
                pc_upright_depth)
            cache = [calib, pc_upright_camera, pc_image_coord]
            cache_id = data_idx
        else:
            calib, pc_upright_camera, pc_image_coord = cache

        #if det_type_list[det_idx]!='Car': continue
        if det_type_list[det_idx] not in type_whitelist: continue

        # 2D BOX: Get pts rect backprojected
        xmin, ymin, xmax, ymax = det_box2d_list[det_idx]
        box_fov_inds = (pc_image_coord[:, 0] < xmax) & (
            pc_image_coord[:, 0] >= xmin) & (pc_image_coord[:, 1] < ymax) & (
                pc_image_coord[:, 1] >= ymin)
        pc_in_box_fov = pc_upright_camera[box_fov_inds, :]
        # Get frustum angle (according to center pixel in 2D BOX)
        box2d_center = np.array([(xmin + xmax) / 2.0, (ymin + ymax) / 2.0])
        uvdepth = np.zeros((1, 3))
        uvdepth[0, 0:2] = box2d_center
        uvdepth[0, 2] = 20  # some random depth
        box2d_center_upright_camera = calib.project_image_to_upright_camerea(
            uvdepth)
        frustum_angle = -1 * np.arctan2(
            box2d_center_upright_camera[0, 2], box2d_center_upright_camera[
                0, 0])  # angle as to positive x-axis as in the Zoox paper
        # Subsample points..
        num_point = pc_in_box_fov.shape[0]
        if num_point > 2048:
            choice = np.random.choice(pc_in_box_fov.shape[0],
                                      2048,
                                      replace=False)
            pc_in_box_fov = pc_in_box_fov[choice, :]

        # Pass objects that are too small
        if len(pc_in_box_fov) < 5:
            continue

        id_list.append(data_idx)
        type_list.append(det_type_list[det_idx])
        box2d_list.append(det_box2d_list[det_idx])
        prob_list.append(det_prob_list[det_idx])
        input_list.append(pc_in_box_fov)
        frustum_angle_list.append(frustum_angle)

    utils.save_zipped_pickle([
        id_list, box2d_list, input_list, type_list, frustum_angle_list,
        prob_list
    ], output_filename)

    if viz:
        for i in range(10):
            p1 = input_list[i]
            fig = mlab.figure(figure=None,
                              bgcolor=(0.4, 0.4, 0.4),
                              fgcolor=None,
                              engine=None,
                              size=(500, 500))
            mlab.points3d(p1[:, 0],
                          p1[:, 1],
                          p1[:, 2],
                          p1[:, 1],
                          mode='point',
                          colormap='gnuplot',
                          scale_factor=1,
                          figure=fig)
            fig = mlab.figure(figure=None,
                              bgcolor=(0.4, 0.4, 0.4),
                              fgcolor=None,
                              engine=None,
                              size=(500, 500))
            mlab.points3d(p1[:, 2],
                          -p1[:, 0],
                          -p1[:, 1],
                          seg,
                          mode='point',
                          colormap='gnuplot',
                          scale_factor=1,
                          figure=fig)
            raw_input()
コード例 #4
0
ファイル: sunrgbd_data.py プロジェクト: atangger/dlProject
def extract_roi_seg(idx_filename,
                    split,
                    output_filename,
                    viz,
                    perturb_box2d=False,
                    augmentX=1,
                    type_whitelist=[
                        'bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
                        'dresser', 'night_stand', 'bookshelf', 'bathtub'
                    ]):
    dataset = sunrgbd_object(
        '/home/haianyt/frustum-pointnets/sunrgbd/sunrgbd_data/matlab/SUNRGBDtoolbox/mysunrgbd',
        split)
    data_idx_list = [int(line.rstrip()) for line in open(idx_filename)]

    id_list = []  # int number
    box2d_list = []  # [xmin,ymin,xmax,ymax]
    box3d_list = []  # (8,3) array in upright depth coord
    input_list = []  # channel number = 6, xyz,rgb in upright depth coord
    label_list = []  # 1 for roi object, 0 for clutter
    type_list = []  # string e.g. bed
    heading_list = [
    ]  # face of object angle, radius of clockwise angle from positive x axis in upright camera coord
    box3d_size_list = []  # array of l,w,h
    frustum_angle_list = [
    ]  # angle of 2d box center from pos x-axis (clockwise)

    pos_cnt = 0
    all_cnt = 0
    #debuglimit = 10
    for data_idx in data_idx_list:
        #   debuglimit -=1
        #  if debuglimit <=0:
        #     break
        print('------------- ', data_idx)
        calib = dataset.get_calibration(data_idx)
        objects = dataset.get_label_objects(data_idx)
        pc_upright_depth = dataset.get_depth(data_idx)
        pc_upright_camera = np.zeros_like(pc_upright_depth)
        pc_upright_camera[:,
                          0:3] = calib.project_upright_depth_to_upright_camera(
                              pc_upright_depth[:, 0:3])
        pc_upright_camera[:, 3:] = pc_upright_depth[:, 3:]
        if viz:
            mlab.points3d(pc_upright_camera[:, 0],
                          pc_upright_camera[:, 1],
                          pc_upright_camera[:, 2],
                          pc_upright_camera[:, 1],
                          mode='point')
            mlab.orientation_axes()
            raw_input()
        img = dataset.get_image(data_idx)
        img_height, img_width, img_channel = img.shape
        pc_image_coord, _ = calib.project_upright_depth_to_image(
            pc_upright_depth)
        #print('PC image coord: ', pc_image_coord)

        for obj_idx in range(len(objects)):
            obj = objects[obj_idx]
            if obj.classname not in type_whitelist: continue

            print("object pass the type_whitelist augmentX = ", augmentX)

            # 2D BOX: Get pts rect backprojected
            box2d = obj.box2d
            for _ in range(augmentX):
                # Augment data by box2d perturbation
                if perturb_box2d:
                    xmin, ymin, xmax, ymax = random_shift_box2d(box2d)
                    print(xmin, ymin, xmax, ymax)
                else:
                    xmin, ymin, xmax, ymax = box2d
                box_fov_inds = (pc_image_coord[:, 0] <
                                xmax) & (pc_image_coord[:, 0] >= xmin) & (
                                    pc_image_coord[:, 1] <
                                    ymax) & (pc_image_coord[:, 1] >= ymin)
                pc_in_box_fov = pc_upright_camera[box_fov_inds, :]
                # Get frustum angle (according to center pixel in 2D BOX)
                box2d_center = np.array([(xmin + xmax) / 2.0,
                                         (ymin + ymax) / 2.0])
                uvdepth = np.zeros((1, 3))
                uvdepth[0, 0:2] = box2d_center
                uvdepth[0, 2] = 20  # some random depth
                box2d_center_upright_camera = calib.project_image_to_upright_camerea(
                    uvdepth)
                print('UVdepth, center in upright camera: ', uvdepth,
                      box2d_center_upright_camera)
                frustum_angle = -1 * np.arctan2(
                    box2d_center_upright_camera[0, 2],
                    box2d_center_upright_camera[0, 0]
                )  # angle as to positive x-axis as in the Zoox paper
                print('Frustum angle: ', frustum_angle)

                # 3D BOX: Get pts velo in 3d box
                box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib)
                box3d_pts_3d = calib.project_upright_depth_to_upright_camera(
                    box3d_pts_3d)
                _, inds = extract_pc_in_box3d(pc_in_box_fov, box3d_pts_3d)
                print(len(inds))
                label = np.zeros((pc_in_box_fov.shape[0]))
                label[inds] = 1
                # Get 3D BOX heading
                print('Orientation: ', obj.orientation)
                print('Heading angle: ', obj.heading_angle)
                # Get 3D BOX size
                box3d_size = np.array([2 * obj.l, 2 * obj.w, 2 * obj.h])
                print('Box3d size: ', box3d_size)
                print('Type: ', obj.classname)
                print('Num of point: ', pc_in_box_fov.shape[0])

                # Subsample points..
                num_point = pc_in_box_fov.shape[0]
                if num_point > 2048:
                    choice = np.random.choice(pc_in_box_fov.shape[0],
                                              2048,
                                              replace=False)
                    pc_in_box_fov = pc_in_box_fov[choice, :]
                    label = label[choice]
                # Reject object with too few points
                if np.sum(label) < 5:
                    continue

                id_list.append(data_idx)
                box2d_list.append(np.array([xmin, ymin, xmax, ymax]))
                box3d_list.append(box3d_pts_3d)
                input_list.append(pc_in_box_fov)
                label_list.append(label)
                type_list.append(obj.classname)
                heading_list.append(obj.heading_angle)
                box3d_size_list.append(box3d_size)
                frustum_angle_list.append(frustum_angle)

                # collect statistics
                pos_cnt += np.sum(label)
                all_cnt += pc_in_box_fov.shape[0]

                # VISUALIZATION
                if viz:
                    img2 = np.copy(img)
                    cv2.rectangle(img2, (int(obj.xmin), int(obj.ymin)),
                                  (int(obj.xmax), int(obj.ymax)), (0, 255, 0),
                                  2)
                    utils.draw_projected_box3d(img2, box3d_pts_2d)
                    Image.fromarray(img2).show()
                    p1 = input_list[-1]
                    seg = label_list[-1]
                    fig = mlab.figure(figure=None,
                                      bgcolor=(0.4, 0.4, 0.4),
                                      fgcolor=None,
                                      engine=None,
                                      size=(500, 500))
                    mlab.points3d(p1[:, 0],
                                  p1[:, 1],
                                  p1[:, 2],
                                  seg,
                                  mode='point',
                                  colormap='gnuplot',
                                  scale_factor=1,
                                  figure=fig)
                    mlab.points3d(0,
                                  0,
                                  0,
                                  color=(1, 1, 1),
                                  mode='sphere',
                                  scale_factor=0.2)
                    draw_gt_boxes3d([box3d_pts_3d], fig=fig)
                    mlab.orientation_axes()
                    raw_input()

    print('Average pos ratio: ', pos_cnt / float(all_cnt))
    print('Average npoints: ', float(all_cnt) / len(id_list))

    utils.save_zipped_pickle([
        id_list, box2d_list, box3d_list, input_list, label_list, type_list,
        heading_list, box3d_size_list, frustum_angle_list
    ], output_filename)
コード例 #5
0
def extract_roi_seg(idx_filename,
                    split,
                    output_filename,
                    viz,
                    perturb_box2d=False,
                    augmentX=1,
                    type_whitelist=[
                        'bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
                        'dresser', 'night_stand', 'bookshelf', 'bathtub'
                    ]):

    print('Extracting roi_seg from: %s' % idx_filename)
    dataset = sunrgbd_object(SUNRGBD_DATASET_DIR, split)
    data_idx_list = [int(line.rstrip()) for line in open(idx_filename)]

    id_list = []  # int number
    box2d_list = []  # [xmin,ymin,xmax,ymax]
    box3d_list = []  # (8,3) array in upright depth coord
    image_list = [
    ]  # (h_i, w_i, 3) - different height and width for each image
    input_list = []  # channel number = 6, xyz,rgb in upright depth coord
    label_list = []  # 1 for roi object, 0 for clutter
    type_list = []  # string e.g. bed
    heading_list = [
    ]  # face of object angle, radius of clockwise angle from positive x axis in upright camera coord
    box3d_size_list = []  # array of l,w,h
    rtilts_list = []  # (3,3) array used for projection onto image
    ks_list = []  # (3,3) array used for projection onto image
    frustum_angle_list = [
    ]  # angle of 2d box center from pos x-axis (clockwise)
    img_dims_list = []  # dimensions of the full images (not just the object)

    pos_cnt = 0
    all_cnt = 0
    for data_idx in data_idx_list:
        print('------------- ', data_idx)
        calib, objects, pc_upright_camera, img, pc_image_coord = load_data(
            dataset, data_idx)

        #print('PC image coord: ', pc_image_coord)

        for obj_idx in range(len(objects)):
            obj = objects[obj_idx]
            if obj.classname not in type_whitelist: continue

            # 2D BOX: Get pts rect backprojected
            for _ in range(augmentX):
                #try:
                box2d, box3d_pts_3d, cropped_image, pc_in_box_fov, label, box3d_size, frustum_angle, img_dims = \
                    process_object(calib, obj, pc_upright_camera, img, pc_image_coord, perturb_box2d=perturb_box2d)

                # Reject object with too few points
                if np.sum(label) < 5:
                    continue

                id_list.append(data_idx)
                box2d_list.append(box2d)
                box3d_list.append(box3d_pts_3d)
                image_list.append(cropped_image)
                input_list.append(pc_in_box_fov)
                label_list.append(label)
                type_list.append(obj.classname)
                heading_list.append(obj.heading_angle)
                box3d_size_list.append(box3d_size)
                rtilts_list.append(calib.Rtilt)
                ks_list.append(calib.K)
                frustum_angle_list.append(frustum_angle)
                img_dims_list.append(img_dims)

                # collect statistics
                pos_cnt += np.sum(label)
                all_cnt += pc_in_box_fov.shape[0]

    print('Average pos ratio: ', pos_cnt / float(all_cnt))
    print('Average npoints: ', float(all_cnt) / len(id_list))

    utils.save_zipped_pickle([id_list, box2d_list, box3d_list, image_list, input_list, label_list, \
                              type_list, heading_list, box3d_size_list, rtilts_list, ks_list, \
                              frustum_angle_list, img_dims_list], output_filename)
コード例 #6
0
def extract_roi_seg_from_rgb_detection(det_folder, split, output_filename, viz, valid_id_list=None, type_whitelist=['bed','table','sofa','chair','toilet','desk','dresser','night_stand','bookshelf','bathtub']):
    ''' Extract data pairs for RoI point set segmentation from RGB detector outputed 2D boxes.
        
        Input:
            det_folder: contains files for each frame, lines in each file are type -1 -10 -10 xmin ymin xmax ymax ... prob
            split: corresponding to official either trianing or testing
            output_filename: the name for output .pickle file
            valid_id_list: specify a list of valid image IDs
        Output:
            None (will write a .pickle file to the disk)

        Usage: extract_roi_seg_from_rgb_detection("val_result_folder", "training", "roi_seg_val_rgb_detector_0908.pickle")

    '''
    dataset = sunrgbd_object('/home/rqi/Data/mysunrgbd', split)
    det_id_list, det_type_list, det_box2d_list, det_prob_list = read_det_folder(det_folder)
    cache_id = -1
    cache = None
    
    id_list = []
    type_list = []
    box2d_list = []
    prob_list = []
    input_list = [] # channel number = 4, xyz,intensity in rect camera coord
    frustum_angle_list = [] # angle of 2d box center from pos x-axis

    for det_idx in range(len(det_id_list)):
        data_idx = det_id_list[det_idx]
        if valid_id_list is not None and data_idx not in valid_id_list: continue
        print('det idx: %d/%d, data idx: %d' % (det_idx, len(det_id_list), data_idx))
        if cache_id != data_idx:
            calib = dataset.get_calibration(data_idx)
            pc_upright_depth = dataset.get_depth(data_idx)
            pc_upright_camera = np.zeros_like(pc_upright_depth)
            pc_upright_camera[:,0:3] = calib.project_upright_depth_to_upright_camera(pc_upright_depth[:,0:3])
            pc_upright_camera[:,3:] = pc_upright_depth[:,3:]

            img = dataset.get_image(data_idx)
            img_height, img_width, img_channel = img.shape
            pc_image_coord,_ = calib.project_upright_depth_to_image(pc_upright_depth)
            cache = [calib,pc_upright_camera,pc_image_coord]
            cache_id = data_idx
        else:
            calib,pc_upright_camera,pc_image_coord = cache

       
        #if det_type_list[det_idx]!='Car': continue
        if det_type_list[det_idx] not in type_whitelist: continue

        # 2D BOX: Get pts rect backprojected 
        xmin,ymin,xmax,ymax = det_box2d_list[det_idx]
        box_fov_inds = (pc_image_coord[:,0]<xmax) & (pc_image_coord[:,0]>=xmin) & (pc_image_coord[:,1]<ymax) & (pc_image_coord[:,1]>=ymin)
        pc_in_box_fov = pc_upright_camera[box_fov_inds,:]
        # Get frustum angle (according to center pixel in 2D BOX)
        box2d_center = np.array([(xmin+xmax)/2.0, (ymin+ymax)/2.0])
        uvdepth = np.zeros((1,3))
        uvdepth[0,0:2] = box2d_center
        uvdepth[0,2] = 20 # some random depth
        box2d_center_upright_camera = calib.project_image_to_upright_camerea(uvdepth)
        frustum_angle = -1 * np.arctan2(box2d_center_upright_camera[0,2], box2d_center_upright_camera[0,0]) # angle as to positive x-axis as in the Zoox paper
        # Subsample points..
        num_point = pc_in_box_fov.shape[0]
        if num_point > 2048:
            choice = np.random.choice(pc_in_box_fov.shape[0], 2048, replace=False)
            pc_in_box_fov = pc_in_box_fov[choice,:]
 
        # Pass objects that are too small
        if len(pc_in_box_fov)<5:
            continue
       
        id_list.append(data_idx)
        type_list.append(det_type_list[det_idx])
        box2d_list.append(det_box2d_list[det_idx])
        prob_list.append(det_prob_list[det_idx])
        input_list.append(pc_in_box_fov)
        frustum_angle_list.append(frustum_angle)
    
    utils.save_zipped_pickle([id_list, box2d_list, input_list, type_list, frustum_angle_list, prob_list], output_filename)
    
    if viz:
        for i in range(10):
            p1 = input_list[i]
            fig = mlab.figure(figure=None, bgcolor=(0.4,0.4,0.4), fgcolor=None, engine=None, size=(500, 500))
            mlab.points3d(p1[:,0], p1[:,1], p1[:,2], p1[:,1], mode='point', colormap='gnuplot', scale_factor=1, figure=fig)
            fig = mlab.figure(figure=None, bgcolor=(0.4,0.4,0.4), fgcolor=None, engine=None, size=(500, 500))
            mlab.points3d(p1[:,2], -p1[:,0], -p1[:,1], seg, mode='point', colormap='gnuplot', scale_factor=1, figure=fig)
            raw_input()
コード例 #7
0
def extract_roi_seg(idx_filename, split, output_filename, viz, perturb_box2d=False, augmentX=1, type_whitelist=['bed','table','sofa','chair','toilet','desk','dresser','night_stand','bookshelf','bathtub']):
    dataset = sunrgbd_object('/home/rqi/Data/mysunrgbd', split)
    data_idx_list = [int(line.rstrip()) for line in open(idx_filename)]

    id_list = [] # int number
    box2d_list = [] # [xmin,ymin,xmax,ymax]
    box3d_list = [] # (8,3) array in upright depth coord
    input_list = [] # channel number = 6, xyz,rgb in upright depth coord
    label_list = [] # 1 for roi object, 0 for clutter
    type_list = [] # string e.g. bed
    heading_list = [] # face of object angle, radius of clockwise angle from positive x axis in upright camera coord
    box3d_size_list = [] # array of l,w,h
    frustum_angle_list = [] # angle of 2d box center from pos x-axis (clockwise)

    pos_cnt = 0
    all_cnt = 0
    for data_idx in data_idx_list:
        print('------------- ', data_idx)
        calib = dataset.get_calibration(data_idx)
        objects = dataset.get_label_objects(data_idx)
        pc_upright_depth = dataset.get_depth(data_idx)
        pc_upright_camera = np.zeros_like(pc_upright_depth)
        pc_upright_camera[:,0:3] = calib.project_upright_depth_to_upright_camera(pc_upright_depth[:,0:3])
        pc_upright_camera[:,3:] = pc_upright_depth[:,3:]
        if viz:
            mlab.points3d(pc_upright_camera[:,0], pc_upright_camera[:,1], pc_upright_camera[:,2], pc_upright_camera[:,1], mode='point')
            mlab.orientation_axes()
            raw_input()
        img = dataset.get_image(data_idx)
        img_height, img_width, img_channel = img.shape
        pc_image_coord,_ = calib.project_upright_depth_to_image(pc_upright_depth)
        #print('PC image coord: ', pc_image_coord)

        for obj_idx in range(len(objects)):
            obj = objects[obj_idx]
            if obj.classname not in type_whitelist: continue

            # 2D BOX: Get pts rect backprojected 
            box2d = obj.box2d
            for _ in range(augmentX):
                try:
                    # Augment data by box2d perturbation
                    if perturb_box2d:
                        xmin,ymin,xmax,ymax = random_shift_box2d(box2d)
                        print(xmin,ymin,xmax,ymax)
                    else:
                        xmin,ymin,xmax,ymax = box2d
                    box_fov_inds = (pc_image_coord[:,0]<xmax) & (pc_image_coord[:,0]>=xmin) & (pc_image_coord[:,1]<ymax) & (pc_image_coord[:,1]>=ymin)
                    pc_in_box_fov = pc_upright_camera[box_fov_inds,:]
                    # Get frustum angle (according to center pixel in 2D BOX)
                    box2d_center = np.array([(xmin+xmax)/2.0, (ymin+ymax)/2.0])
                    uvdepth = np.zeros((1,3))
                    uvdepth[0,0:2] = box2d_center
                    uvdepth[0,2] = 20 # some random depth
                    box2d_center_upright_camera = calib.project_image_to_upright_camerea(uvdepth)
                    print('UVdepth, center in upright camera: ', uvdepth, box2d_center_upright_camera)
                    frustum_angle = -1 * np.arctan2(box2d_center_upright_camera[0,2], box2d_center_upright_camera[0,0]) # angle as to positive x-axis as in the Zoox paper
                    print('Frustum angle: ', frustum_angle)
                    # 3D BOX: Get pts velo in 3d box
                    box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib) 
                    box3d_pts_3d = calib.project_upright_depth_to_upright_camera(box3d_pts_3d)
                    _,inds = extract_pc_in_box3d(pc_in_box_fov, box3d_pts_3d)
                    print(len(inds))
                    label = np.zeros((pc_in_box_fov.shape[0]))
                    label[inds] = 1
                    # Get 3D BOX heading
                    print('Orientation: ', obj.orientation)
                    print('Heading angle: ', obj.heading_angle)
                    # Get 3D BOX size
                    box3d_size = np.array([2*obj.l,2*obj.w,2*obj.h])
                    print('Box3d size: ', box3d_size)
                    print('Type: ', obj.classname)
                    print('Num of point: ', pc_in_box_fov.shape[0])
                    
                    # Subsample points..
                    num_point = pc_in_box_fov.shape[0]
                    if num_point > 2048:
                        choice = np.random.choice(pc_in_box_fov.shape[0], 2048, replace=False)
                        pc_in_box_fov = pc_in_box_fov[choice,:]
                        label = label[choice]
                    # Reject object with too few points
                    if np.sum(label) < 5:
                        continue

                    id_list.append(data_idx)
                    box2d_list.append(np.array([xmin,ymin,xmax,ymax]))
                    box3d_list.append(box3d_pts_3d)
                    input_list.append(pc_in_box_fov)
                    label_list.append(label)
                    type_list.append(obj.classname)
                    heading_list.append(obj.heading_angle)
                    box3d_size_list.append(box3d_size)
                    frustum_angle_list.append(frustum_angle)
    
                    # collect statistics
                    pos_cnt += np.sum(label)
                    all_cnt += pc_in_box_fov.shape[0]
       
                    # VISUALIZATION
                    if viz:
                        img2 = np.copy(img)
                        cv2.rectangle(img2, (int(obj.xmin),int(obj.ymin)), (int(obj.xmax),int(obj.ymax)), (0,255,0), 2)
                        utils.draw_projected_box3d(img2, box3d_pts_2d)
                        Image.fromarray(img2).show()
                        p1 = input_list[-1]
                        seg = label_list[-1] 
                        fig = mlab.figure(figure=None, bgcolor=(0.4,0.4,0.4), fgcolor=None, engine=None, size=(500, 500))
                        mlab.points3d(p1[:,0], p1[:,1], p1[:,2], seg, mode='point', colormap='gnuplot', scale_factor=1, figure=fig)
                        mlab.points3d(0, 0, 0, color=(1,1,1), mode='sphere', scale_factor=0.2)
                        draw_gt_boxes3d([box3d_pts_3d], fig=fig)
                        mlab.orientation_axes()
                        raw_input()
                except:
                    pass

    print('Average pos ratio: ', pos_cnt/float(all_cnt))
    print('Average npoints: ', float(all_cnt)/len(id_list))

    utils.save_zipped_pickle([id_list,box2d_list,box3d_list,input_list,label_list,type_list,heading_list,box3d_size_list,frustum_angle_list],output_filename)
コード例 #8
0
def main_batch(test_dataset,
               test_classes,
               num_class,
               num_point,
               num_channel,
               prefix='',
               semi_type=None,
               use_boxpc_fit_prob=False,
               sess_ops=None,
               output_filename=None,
               result_dir=None,
               verbose=False):
    ps_list = []
    seg_gt_list = []
    seg_pred_list = []
    center_list = []
    heading_cls_list = []
    heading_res_list = []
    size_cls_list = []
    size_res_list = []
    rot_angle_list = []
    score_list = []
    cls_list = []
    file_num_list = []
    box2d_list = []
    box3d_list = []

    test_idxs = np.arange(0, len(test_dataset))
    batch_size = 32
    num_batches = int((len(test_dataset) + batch_size - 1) / batch_size)

    batch_data_to_feed = np.zeros((batch_size, num_point, num_channel))
    batch_one_hot_to_feed = np.zeros((batch_size, num_class))
    if sess_ops is None:
        sess, ops = get_model(batch_size=batch_size,
                              num_point=num_point,
                              num_channel=num_channel)
    else:
        sess, ops = sess_ops

    idx = 0
    iou_sum = 0
    for batch_idx in range(num_batches):
        if verbose and batch_idx % 10 == 0: print(batch_idx)
        start_idx = batch_idx * batch_size
        end_idx = min(len(test_dataset), (batch_idx + 1) * batch_size)
        cur_batch_size = end_idx - start_idx

        batch_data, batch_image, batch_label, batch_center, batch_hclass, batch_hres, \
        batch_sclass, batch_sres, batch_box2d, batch_rtilt, batch_k, batch_rot_angle, \
        batch_img_dims, batch_one_hot_vec = \
            test_dataset.get_batch(test_idxs, start_idx, end_idx, num_point, num_channel)

        batch_data_to_feed[0:cur_batch_size, ...] = batch_data
        batch_one_hot_to_feed[0:cur_batch_size, :] = batch_one_hot_vec
        batch_output, batch_center_pred, batch_hclass_pred, batch_hres_pred, batch_sclass_pred, \
        batch_sres_pred, batch_scores = inference(sess, ops, batch_data_to_feed, \
                                                  batch_one_hot_to_feed,
                                                  use_boxpc_fit_prob=use_boxpc_fit_prob,
                                                  batch_size=batch_size,
                                                  prefix=prefix)

        # The point cloud has been duplicated, we only want to calculate the IOU
        # on the points that are not duplicated
        # correct_cnt += np.sum(batch_output==batch_label)
        for i, (point_cloud, seg_pred,
                seg_gt) in enumerate(zip(batch_data, batch_output,
                                         batch_label)):
            if start_idx + i >= len(test_dataset.idx_l):
                continue
            _, unique_idx = np.unique(point_cloud, axis=0, return_index=True)
            y_pred = seg_pred[unique_idx]
            y_true = seg_gt[unique_idx]
            iou = float(
                np.sum(y_pred & y_true)) / (np.sum(y_pred | y_true) + 1)
            iou_sum += iou

        for i in range(cur_batch_size):
            ps_list.append(batch_data[i, ...])
            seg_gt_list.append(batch_label[i, ...])
            seg_pred_list.append(batch_output[i, ...])
            center_list.append(batch_center_pred[i, :])
            heading_cls_list.append(batch_hclass_pred[i])
            heading_res_list.append(batch_hres_pred[i])
            size_cls_list.append(batch_sclass_pred[i])
            size_res_list.append(batch_sres_pred[i, :])
            rot_angle_list.append(batch_rot_angle[i])
            score_list.append(batch_scores[i])
            cls_list.append(np.argmax(batch_one_hot_vec[i]))
            file_num_list.append(test_dataset.idx_l[idx])
            box2d_list.append(test_dataset.box2d_l[idx])
            box3d_list.append(test_dataset.box3d_l[idx])
            idx += 1

    print("Mean segmentation IOU: %f" % (iou_sum / len(test_dataset.idx_l)))
    predictions = [ps_list, seg_gt_list, seg_pred_list, center_list, heading_cls_list,
                   heading_res_list, size_cls_list, size_res_list, rot_angle_list, \
                   score_list, cls_list, file_num_list, box2d_list, box3d_list]

    if output_filename is not None:
        save_zipped_pickle(predictions, output_filename)

    if result_dir is not None:
        # Write detection results for MATLAB evaluation
        write_detection_results(result_dir, test_classes, test_dataset.idx_l, test_dataset.cls_type_l, \
            test_dataset.box2d_l, center_list, heading_cls_list, heading_res_list, size_cls_list, \
            size_res_list, rot_angle_list, score_list)

    return predictions
コード例 #9
0
def main_batch_from_rgb_detection(test_dataset,
                                  test_classes,
                                  num_class,
                                  num_point,
                                  num_channel,
                                  prefix='',
                                  semi_type=None,
                                  use_boxpc_fit_prob=False,
                                  use_oracle_mask=False,
                                  sess_ops=None,
                                  output_filename=None,
                                  result_dir=None,
                                  verbose=False):
    ps_list = []
    image_list = []
    segp_list = []
    center_list = []
    heading_cls_list = []
    heading_res_list = []
    size_cls_list = []
    size_res_list = []
    rot_angle_list = []
    score_list = []
    cls_list = []
    file_num_list = []
    box2d_list = []

    test_idxs = np.arange(0, len(test_dataset))
    batch_size = 32
    num_batches = int((len(test_dataset) + batch_size - 1) / batch_size)

    batch_data_to_feed = np.zeros((batch_size, num_point, num_channel))
    batch_one_hot_to_feed = np.zeros((batch_size, num_class))
    batch_oracle_mask_to_feed = np.zeros((batch_size, num_point))
    if sess_ops is None:
        sess, ops = get_model(batch_size=batch_size,
                              num_point=num_point,
                              num_channel=num_channel,
                              use_oracle_mask=use_oracle_mask)
    else:
        sess, ops = sess_ops

    idx = 0
    for batch_idx in range(num_batches):
        if verbose and batch_idx % 10 == 0: print(batch_idx)
        start_idx = batch_idx * batch_size
        end_idx = min(len(test_dataset), (batch_idx + 1) * batch_size)
        cur_batch_size = end_idx - start_idx

        batch_data, batch_image, batch_rot_angle, batch_rgb_prob, batch_one_hot_vec, \
        batch_oracle_y_seg = \
            test_dataset.get_batch(test_idxs, start_idx, end_idx, num_point, num_channel,
                                   from_rgb_detection=True)

        batch_data_to_feed[0:cur_batch_size, ...] = batch_data
        batch_one_hot_to_feed[0:cur_batch_size, :] = batch_one_hot_vec
        if use_oracle_mask:
            batch_oracle_mask_to_feed[0:cur_batch_size,
                                      ...] = batch_oracle_y_seg
        else:
            batch_oracle_mask_to_feed = None
        batch_output, batch_center_pred, batch_hclass_pred, batch_hres_pred, batch_sclass_pred, \
        batch_sres_pred, batch_scores = inference(sess, ops, batch_data_to_feed, \
                                                  batch_one_hot_to_feed,
                                                  use_boxpc_fit_prob=use_boxpc_fit_prob,
                                                  oracle_mask=batch_oracle_mask_to_feed,
                                                  batch_size=batch_size,
                                                  prefix=prefix)

        for i in range(cur_batch_size):
            ps_list.append(batch_data[i, ...])
            segp_list.append(batch_output[i, ...])
            center_list.append(batch_center_pred[i, :])
            heading_cls_list.append(batch_hclass_pred[i])
            heading_res_list.append(batch_hres_pred[i])
            size_cls_list.append(batch_sclass_pred[i])
            size_res_list.append(batch_sres_pred[i, :])
            rot_angle_list.append(batch_rot_angle[i])
            # Combine 3D BOX score and 2D RGB detection score
            # score_list.append(batch_scores[i] + np.log(batch_rgb_prob[i]))
            score_list.append(batch_rgb_prob[i])  # 2D RGB detection score

            cls_list.append(np.argmax(batch_one_hot_vec[i]))
            file_num_list.append(test_dataset.idx_l[idx])
            box2d_list.append(test_dataset.box2d_l[idx])
            idx += 1

    predictions = [ps_list, None, segp_list, center_list, heading_cls_list, \
                   heading_res_list, size_cls_list, size_res_list, rot_angle_list, \
                   score_list, cls_list, file_num_list, box2d_list, None]

    if output_filename is not None:
        save_zipped_pickle(predictions, output_filename)

    if result_dir is not None:
        # Write detection results for MATLAB evaluation
        write_detection_results(result_dir, test_classes, test_dataset.idx_l, test_dataset.cls_type_l, \
            test_dataset.box2d_l, center_list, heading_cls_list, heading_res_list, size_cls_list, \
            size_res_list, rot_angle_list, score_list)

    return predictions
コード例 #10
0
ファイル: run_cl.py プロジェクト: sungsoo-ahn/pseudo-data
    for age, task_idx in enumerate(range(nb_tasks)):
        print("Age is {}".format(age))
        X_train, y_train = training_data[task_idx]

        cl.pre_task_updates()
        cl.fit(X_train, y_train, protocol['epochs_per_task'])

        ftask = []
        for X_valid, y_valid in valid_data[:task_idx + 1]:
            f_ = cl.evaluate(X_valid, y_valid)
            ftask.append(f_)

        print(np.mean(ftask))
        evals.append(ftask)

        next_task = True if task_idx != nb_tasks - 1 else False
        cl.post_task_updates(X_train, y_train, next_task=next_task)

    return evals, tmp_evals


total_evals = []
evals, tmp_evals = run_fits(training_dataset, validation_dataset)

print([np.mean(e) for e in evals])
print([np.mean(e) for e in tmp_evals])

utils.save_zipped_pickle(evals, datafile_name)
evals = utils.load_zipped_pickle(datafile_name)