コード例 #1
0
def get_extrema(s, k, i):
    fc = s.drillstring.pdm.failure
    mu, cov, c = get_deg_block(s, k, i)
    inv = np.linalg.inv(cov)
    rad = np.sqrt(np.diag(cov)[:, None])
    X = s.X[k:i]
    sep = Sep(X)
    m = sep.m
    xub = fc.rogp.warp_inv(mu + rad)
    xlb = fc.rogp.warp_inv(mu - rad)
    r = _pyomo_to_np(m.r, ind=X)
    hz = fc.rogp.warp(r)
    diff = hz - mu
    c = np.matmul(np.matmul(diff.T, inv), diff)[0, 0]
    obj = (c - 1)**2
    m.Obj = p.Objective(expr=obj, sense=p.minimize)
    extrema = []
    for i in range(mu.shape[0]):
        m.r[X[i]].value = xlb[i]
        m.r[X[i]].fixed = True
        utils.solve(sep, solver='Baron')
        r = _pyomo_to_np(m.r, ind=X, evaluate=True)
        hz = fc.rogp.warp(r)
        extrema.append(hz)
        m.r[X[i]].fixed = False
    return extrema
コード例 #2
0
def check_deg_block(s, k, i):
    fc = s.drillstring.pdm.failure
    fc.rogp.set_tanh(False)
    # Initialize parameters
    alpha = 1 - (1 - s.alpha) / (len(s.Xm) + 1)
    F = sp.stats.norm.ppf(alpha)
    X = s.X[k:i]
    Xvar = s.Xvar
    delta = {s.X[j]: Xvar[j + 1] - Xvar[j] for j in range(k, i)}
    dp = [[s.m.rop[x].deltap()] for x in X]
    dp = _to_np_obj_array(dp)
    # TODO: make eps = 0.001 a parameter
    dt = [[delta[x] / (s.m.rop[x].V + 0.001)] for x in X]
    dt = [[x[0]()] for x in dt]
    dt = _to_np_obj_array(dt)
    sep = Sep(X)
    r = _pyomo_to_np(sep.m.r, ind=X)

    # Calculate matrices
    Sig = fc.rogp.predict_cov_latent(dp).astype('float')
    inv = np.linalg.inv(Sig)
    hz = fc.rogp.warp(r)
    mu = fc.rogp.predict_mu_latent(dp)
    diff = hz - mu

    obj = np.matmul(dt.T, r)[0, 0]
    sep.m.Obj = p.Objective(expr=obj, sense=p.maximize)
    c = np.matmul(np.matmul(diff.T, inv), diff)[0, 0]
    sep.m.cons.add(c <= F)
    utils.solve(sep, solver='Baron')

    if obj() - 1.0 > 10e-5:
        return False

    return True
コード例 #3
0
ファイル: sudoku.py プロジェクト: tristan-jl/sudoku
def main():
    sudokus_df = pd.read_csv("data/sudoku.csv")
    sudokus = np.array([(np.fromstring(i, np.int8) - ord("0")).reshape(9, 9)
                        for i in sudokus_df["quizzes"].to_numpy()])

    start_time = time.time()
    for p in tqdm(sudokus):
        solve(p)

    t = time.time() - start_time

    print(t)
    print(t / len(sudokus))
    np.save("data/sudokus.npy", sudokus)
コード例 #4
0
ファイル: lspi.py プロジェクト: litlboy/LSPI-with-PVF
 def iteration(self, theta):
     features = self.phi_state[np.arange(len(self.actions)),
                               self.actions, :]
     next_actions = np.argmax(np.dot(self.phi_nstate, theta), axis=1)
     next_features = self.phi_nstate[np.arange(len(next_actions)),
                                     next_actions, :]
     self.A = np.sum(np.einsum('ij,ik->ijk',features, features - self.gamma*next_features), axis=0) \
                 + 0.001*np.eye(self.basis.size())
     self.b = np.sum(features * self.rewards[:, None], axis=0)
     return solve(self.A, self.b)[0]
コード例 #5
0
def single_LS_step_length_ht(graph, j, alpha=0.15, python=False):
    N = graph.number_of_nodes()
    M = nx.to_numpy_matrix(graph)
    for i in xrange(N):  # Normalize
        if M[i].sum() != 0:
            M[i] /= M[i].sum()
    M[j] = 0  # Remove outedges of j
    A = np.eye(N) - (1 - alpha) * M
    b = np.repeat(1 - alpha, N)
    b[j] = 0
    if python:
        return -utils.solve(A.tolist(), b.tolist())
    else:
        return -np.linalg.solve(A, b)
コード例 #6
0
def single_LS_step_length_ht(graph, j, alpha=0.15, python=False):
    N = graph.number_of_nodes()
    M = nx.to_numpy_matrix(graph)
    for i in xrange(N):  # Normalize
        if M[i].sum() != 0:
            M[i] /= M[i].sum()
    M[j] = 0  # Remove outedges of j
    A = np.eye(N) - (1 - alpha) * M
    b = np.repeat(1 - alpha, N)
    b[j] = 0
    if python:
        return -utils.solve(A.tolist(), b.tolist())
    else:
        return -np.linalg.solve(A, b)
コード例 #7
0
def solution(tests, train_problems, train_users, test_problems, test_users, submissions):
    print("u1p1 has started, time =", time.clock())
    purifying._purify_submissions_unique_rows(submissions)
    extend_data(train_problems, train_users, submissions)
    return utils.solve(
        train_problems,
        train_users,
        submissions,
        tests,
        train_problems,
        train_users,
        NUMBER_OF_FEATURES,
        get_feature_vector,
    )
コード例 #8
0
ファイル: sde_gp.py プロジェクト: NajwaLaabid/GPS-on-botnet
 def rauch_tung_striebel_smoother(self,
                                  params,
                                  m_filtered,
                                  P_filtered,
                                  dt,
                                  store=False,
                                  return_full=False,
                                  y=None,
                                  site_params=None,
                                  r=None):
     """
     Run the RTS smoother to get p(fₙ|y₁,...,y_N),
     i.e. compute p(f)𝚷ₙsₙ(fₙ) where sₙ(fₙ) are the sites (approx. likelihoods).
     If sites are provided, then it is assumed they are to be updated, which is done by
     calling the site-specific update() method.
     :param params: the model parameters, i.e the hyperparameters of the prior & likelihood
     :param m_filtered: the intermediate distribution means computed during filtering [N, state_dim, 1]
     :param P_filtered: the intermediate distribution covariances computed during filtering [N, state_dim, state_dim]
     :param dt: step sizes Δtₙ = tₙ - tₙ₋₁ [N, 1]
     :param store: a flag determining whether to store and return state mean and covariance
     :param return_full: a flag determining whether to return the full state distribution or just the function(s)
     :param y: observed data [N, obs_dim]
     :param site_params: the Gaussian approximate likelihoods [2, N, obs_dim]
     :param r: spatial input locations
     :return:
         var_exp: the sum of the variational expectations [scalar]
         smoothed_mean: the posterior marginal means [N, obs_dim]
         smoothed_var: the posterior marginal variances [N, obs_dim]
         site_params: the updated sites [2, N, obs_dim]
     """
     theta_prior, theta_lik = softplus_list(params[0]), softplus(params[1])
     self.update_model(
         theta_prior
     )  # all model components that are not static must be computed inside the function
     N = dt.shape[0]
     dt = np.concatenate([dt[1:], np.array([0.0])], axis=0)
     with loops.Scope() as s:
         s.m, s.P = m_filtered[-1, ...], P_filtered[-1, ...]
         if return_full:
             s.smoothed_mean = np.zeros([N, self.state_dim, 1])
             s.smoothed_cov = np.zeros([N, self.state_dim, self.state_dim])
         else:
             s.smoothed_mean = np.zeros([N, self.func_dim, 1])
             s.smoothed_cov = np.zeros([N, self.func_dim, self.func_dim])
         if site_params is not None:
             s.site_mean = np.zeros([N, self.func_dim, 1])
             s.site_var = np.zeros([N, self.func_dim, self.func_dim])
         for n in s.range(N - 1, -1, -1):
             # --- First compute the smoothing distribution: ---
             A = self.prior.state_transition(
                 dt[n], theta_prior
             )  # closed form integration of transition matrix
             m_predicted = A @ m_filtered[n, ...]
             tmp_gain_cov = A @ P_filtered[n, ...]
             P_predicted = A @ (P_filtered[n, ...] -
                                self.Pinf) @ A.T + self.Pinf
             # backward Kalman gain:
             # G = F * A' * P^{-1}
             # since both F(iltered) and P(redictive) are cov matrices, thus self-adjoint, we can take the transpose:
             #   = (P^{-1} * A * F)'
             G_transpose = solve(P_predicted, tmp_gain_cov)  # (P^-1)AF
             s.m = m_filtered[n, ...] + G_transpose.T @ (s.m - m_predicted)
             s.P = P_filtered[
                 n, ...] + G_transpose.T @ (s.P - P_predicted) @ G_transpose
             H = self.prior.measurement_model(r[n], theta_prior)
             if store:
                 if return_full:
                     s.smoothed_mean = index_add(s.smoothed_mean,
                                                 index[n, ...], s.m)
                     s.smoothed_cov = index_add(s.smoothed_cov,
                                                index[n, ...], s.P)
                 else:
                     s.smoothed_mean = index_add(s.smoothed_mean,
                                                 index[n, ...], H @ s.m)
                     s.smoothed_cov = index_add(s.smoothed_cov, index[n,
                                                                      ...],
                                                H @ s.P @ H.T)
             # --- Now update the site parameters: ---
             if site_params is not None:
                 # extract mean and var from state:
                 post_mean, post_cov = H @ s.m, H @ s.P @ H.T
                 # calculate the new sites
                 _, site_mu, site_cov = self.sites.update(
                     self.likelihood, y[n][...,
                                           np.newaxis], post_mean, post_cov,
                     theta_lik, (site_params[0][n], site_params[1][n]))
                 s.site_mean = index_add(s.site_mean, index[n, ...],
                                         site_mu)
                 s.site_var = index_add(s.site_var, index[n, ...], site_cov)
     if site_params is not None:
         site_params = (s.site_mean, s.site_var)
     if store:
         return site_params, s.smoothed_mean, s.smoothed_cov
     return site_params
コード例 #9
0
ファイル: sde_gp.py プロジェクト: NajwaLaabid/GPS-on-botnet
 def kalman_filter(self,
                   y,
                   dt,
                   params,
                   store=False,
                   mask=None,
                   site_params=None,
                   r=None):
     """
     Run the Kalman filter to get p(fₙ|y₁,...,yₙ).
     The Kalman update step invloves some control flow to work out whether we are
         i) initialising the sites
         ii) using supplied sites
         iii) performing a Gaussian update with fixed parameters (e.g. in posterior sampling or ELBO calc.)
     If store is True then we compute and return the intermediate filtering distributions
     p(fₙ|y₁,...,yₙ) and sites sₙ(fₙ), otherwise we do not store the intermediates and simply
     return the energy / negative log-marginal likelihood, -log p(y).
     :param y: observed data [N, obs_dim]
     :param dt: step sizes Δtₙ = tₙ - tₙ₋₁ [N, 1]
     :param params: the model parameters, i.e the hyperparameters of the prior & likelihood
     :param store: flag to notify whether to store the intermediates
     :param mask: boolean array signifying which elements of y are observed [N, obs_dim]
     :param site_params: the Gaussian approximate likelihoods [2, N, obs_dim]
     :param r: spatial input locations
     :return:
         if store is True:
             neg_log_marg_lik: the filter energy, i.e. negative log-marginal likelihood -log p(y),
                               used for hyperparameter optimisation (learning) [scalar]
             filtered_mean: intermediate filtering means [N, state_dim, 1]
             filtered_cov: intermediate filtering covariances [N, state_dim, state_dim]
             site_mean: mean of the approximate likelihood sₙ(fₙ) [N, obs_dim]
             site_cov: variance of the approximate likelihood sₙ(fₙ) [N, obs_dim]
         otherwise:
             neg_log_marg_lik: the filter energy, i.e. negative log-marginal likelihood -log p(y),
                               used for hyperparameter optimisation (learning) [scalar]
     """
     theta_prior, theta_lik = softplus_list(params[0]), softplus(params[1])
     self.update_model(
         theta_prior
     )  # all model components that are not static must be computed inside the function
     N = dt.shape[0]
     with loops.Scope() as s:
         s.neg_log_marg_lik = 0.0  # negative log-marginal likelihood
         s.m, s.P = self.minf, self.Pinf
         if store:
             s.filtered_mean = np.zeros([N, self.state_dim, 1])
             s.filtered_cov = np.zeros([N, self.state_dim, self.state_dim])
             s.site_mean = np.zeros([N, self.func_dim, 1])
             s.site_cov = np.zeros([N, self.func_dim, self.func_dim])
         for n in s.range(N):
             y_n = y[n][..., np.newaxis]
             # -- KALMAN PREDICT --
             #  mₙ⁻ = Aₙ mₙ₋₁
             #  Pₙ⁻ = Aₙ Pₙ₋₁ Aₙ' + Qₙ, where Qₙ = Pinf - Aₙ Pinf Aₙ'
             A = self.prior.state_transition(dt[n], theta_prior)
             m_ = A @ s.m
             P_ = A @ (s.P - self.Pinf) @ A.T + self.Pinf
             # --- KALMAN UPDATE ---
             # Given previous predicted mean mₙ⁻ and cov Pₙ⁻, incorporate yₙ to get filtered mean mₙ &
             # cov Pₙ and compute the marginal likelihood p(yₙ|y₁,...,yₙ₋₁)
             H = self.prior.measurement_model(r[n], theta_prior)
             predict_mean = H @ m_
             predict_cov = H @ P_ @ H.T
             if mask is not None:  # note: this is a bit redundant but may come in handy in multi-output problems
                 y_n = np.where(mask[n][..., np.newaxis],
                                predict_mean[:y_n.shape[0]],
                                y_n)  # fill in masked obs with expectation
             log_lik_n, site_mean, site_cov = self.sites.update(
                 self.likelihood, y_n, predict_mean, predict_cov, theta_lik,
                 None)
             if site_params is not None:  # use supplied site parameters to perform the update
                 site_mean, site_cov = site_params[0][n], site_params[1][n]
             # modified Kalman update (see Nickish et. al. ICML 2018 or Wilkinson et. al. ICML 2019):
             S = predict_cov + site_cov
             HP = H @ P_
             K = solve(S, HP).T  # PH'(S^-1)
             s.m = m_ + K @ (site_mean - predict_mean)
             s.P = P_ - K @ HP
             if mask is not None:  # note: this is a bit redundant but may come in handy in multi-output problems
                 s.m = np.where(np.any(mask[n]), m_, s.m)
                 s.P = np.where(np.any(mask[n]), P_, s.P)
                 log_lik_n = np.where(mask[n][..., 0],
                                      np.zeros_like(log_lik_n), log_lik_n)
             s.neg_log_marg_lik -= np.sum(log_lik_n)
             if store:
                 s.filtered_mean = index_add(s.filtered_mean, index[n, ...],
                                             s.m)
                 s.filtered_cov = index_add(s.filtered_cov, index[n, ...],
                                            s.P)
                 s.site_mean = index_add(s.site_mean, index[n, ...],
                                         site_mean)
                 s.site_cov = index_add(s.site_cov, index[n, ...], site_cov)
     if store:
         return s.neg_log_marg_lik, (s.filtered_mean, s.filtered_cov,
                                     (s.site_mean, s.site_cov))
     return s.neg_log_marg_lik
コード例 #10
0
ファイル: main.py プロジェクト: MiLk/adventofcode
                    u.move(path[0])
                    adj_targets = u.adjacents(targets) if targets else None

            if adj_targets:
                kill = u.hit(adj_targets[0])
                if eap > 3 and kill:
                    return None

        if not targets:
            break

        rn += 1

    score = sum(u.hp for u in units if u.hp > 0)
    return rn * score


def p1(lines):
    return _solve(lines)


def p2(lines):
    for eap in range(4, 35):
        outcome = _solve(lines, eap)
        if outcome:
            return outcome


if __name__ == "__main__":
    solve(sys.argv, str_line, p1, p2)
コード例 #11
0
ファイル: main.py プロジェクト: MiLk/adventofcode

def p1(lines):
    n = lines[0]
    scores = '37'
    e = 0, 1
    for i in range(1, n + 10):
        ra, rb = int(scores[e[0]]), int(scores[e[1]])
        scores += f"{ra + rb}"
        e = ((e[0] + 1 + ra) % len(scores), (e[1] + 1 + rb) % len(scores))

    return scores[n:n + 10]


def p2(lines):
    n = [int(d) for d in str(lines[0])]
    scores = [3, 7]
    e = 0, 1

    while scores[-len(n):] != n and scores[-len(n) - 1:-1] != n:
        ra, rb = scores[e[0]], scores[e[1]]
        nr = ra + rb
        scores.extend(divmod(nr, 10) if nr >= 10 else (nr, ))
        e = ((e[0] + 1 + ra) % len(scores), (e[1] + 1 + rb) % len(scores))

    return len(scores) - len(n) - (0 if scores[-len(n):] == n else 1)


if __name__ == "__main__":
    solve([79303], int_line, p1, p2)
コード例 #12
0
from qubo_constructor import construct_tsp_matrix, construct_traffic_matrix
from utils import solve
from configs import PROBLEMS

dist_matrix = [[0, 5, 1, 7], [5, 0, 4, 2], [1, 4, 0, 8], [7, 2, 8, 0]]
share_pairs = [((1, 1), (2, 1)), ((1, 2), (2, 1)), ((1, 3), (2, 1)),
               ((3, 1), (2, 2)), ((3, 2), (1, 3)), ((3, 2), (1, 1))]

best_solution, distribution = solve(construct_tsp_matrix(dist_matrix),
                                    PROBLEMS['TSP'], True)
print(best_solution)
コード例 #13
0
                seen, doors = navigate(p, opt + line[end + 1:], seen, doors)
            return seen, doors


def p1(lines):
    global distances

    start = (0, 0)
    _, doors = navigate(start, lines[0].strip(), set(), defaultdict(set))

    distances = {start: 0}
    q = Queue()
    q.put(start)
    while not q.empty():
        src = q.get()
        for dst in doors[src]:
            if dst not in distances:
                distances[dst] = distances[src] + 1
                q.put(dst)

    return max(distances.values())


def p2(_):
    global distances
    return len([k for k in distances if distances[k] >= 1000])


if __name__ == "__main__":
    solve(read_input(), lambda x: x, p1, p2)
コード例 #14
0
ファイル: main.py プロジェクト: MiLk/adventofcode
            # r4: IP
            # r5: inner counter
            print(r)
            # for r3 in range(1, r[2] + 1):
            #     for r5 in range(1, r[2] + 1):
            #         if r3 * r5 == r[2]:
            #             r[0] += r3
            for r3 in range(1, r[2] + 1):
                if r[2] % r3 == 0:
                    r[0] += r3
            return r[0]

        r = globals()[program[r[ip]][0]](r, *program[r[ip]][1:])
        r[ip] += 1


def process_line(line):
    if not line.strip() or line.strip().startswith('#'):
        return None
    s = line.strip().split(' ')
    return s[0], int(s[1]), int(s[2]), int(s[3])


def get_input():
    lines = read_input()
    return int(lines[0][4]), [l for l in map(process_line, lines[1:]) if l]


if __name__ == "__main__":
    solve(get_input(), lambda x: x, p1, p2)
コード例 #15
0
ファイル: main.py プロジェクト: MiLk/adventofcode
        self.current = l
        return 0

    def place23(self, m):
        l = (self.current - 7) % len(self.placed)
        s = m + self.placed.pop(l)
        self.left.remove(m)
        self.current = l
        return s


def p1(lines):
    p, last = lines
    scores = defaultdict(int)
    current_p = 0
    circle = Circle(last)
    while len(circle.left) > 0:
        score = circle.place()
        scores[current_p] += score
        current_p = (current_p + 1) % p

    return max(scores.values())


def p2(_):
    return None


if __name__ == "__main__":
    solve((424, 71482), lambda x: x, p1, p2)
コード例 #16
0
 def solve(self, solver='Ipopt', options={}):
     return utils.solve(self, solver, options)
コード例 #17
0
def solution(tests, train_problems, train_users, test_problems, test_users,
             submissions):
    purifying._purify_submissions_unique_rows(submissions)
    return utils.solve(train_problems, train_users, submissions, tests,
                       test_problems, test_users, NUMBER_OF_FEATURES,
                       get_feature_vector)
コード例 #18
0
ファイル: script.py プロジェクト: SichengHe/wing_truss
writeBDF('output/mesh.bdf', nodes, bars+1)






mat, Kmat = get_matrix(EA, nodes, bars, constrained)

rhs = numpy.zeros(mat.shape[0])
rhs[:3*len(forces)] = forces.flatten()



sol = solve(mat, rhs)[:3*len(forces)]
sol_surf = sol.reshape(xyz.shape)
xyz += sol_surf

surfs = []
surfs.append(xyz[:, :,  0, :])
surfs.append(xyz[:, :, -1, :])
surfs.append(xyz[:,  0, :, :])
surfs.append(xyz[:, -1, :, :])
surfs.append(xyz[ 0, :, :, :])
surfs.append(xyz[-1, :, :, :])
tecwrite.write_surf_multi('output/surf2.dat', surfs)

writeBDF('output/mesh2.bdf', nodes + sol.reshape(nodes.shape), bars+1)

コード例 #19
0
#!/usr/bin/env python

import itertools
import os
import sys

sys.path.insert(0, os.path.abspath('../..'))

from utils import solve, int_line, int_list_line  # nopep8


def p1(lines):
    return sum(lines)


def p2(lines):
    seen = set()
    f = 0
    for l in itertools.cycle(lines):
        seen.add(f)
        f += l
        if f in seen:
            return f


if __name__ == "__main__":
    solve(sys.argv, int_line, p1, p2)
コード例 #20
0
ファイル: main.py プロジェクト: MiLk/adventofcode
        children = []
        for _ in range(0, nn):
            c = Node.create(l)
            children.append(c)
        n = Node(children, [next(l) for _ in range(0, mn)])
        return n

    def metadata_sum(self):
        return sum(self.metadata) + sum(c.metadata_sum()
                                        for c in self.children)

    def value(self):
        if len(self.children) == 0:
            return sum(self.metadata)
        return sum(self.children[i - 1].value() for i in self.metadata
                   if 0 < i <= len(self.children))


def p1(lines):
    tree = Node.create(iter(lines[0]))
    return tree.metadata_sum()


def p2(lines):
    tree = Node.create(iter(lines[0]))
    return tree.value()


if __name__ == "__main__":
    solve(sys.argv, lambda l: int_list_line(l, ' '), p1, p2)
コード例 #21
0
                         config.graph.method_create_graph)
    C_nodes = handler.get_tensor()

fin = time.time()
print("get tensor and decomposition done", fin - debut)
sentence_to_articles = None if not config.graph.sentence_based else handler.articles.sentence_to_article
graph = embedding_matrix_2_kNN(
    C,
    k=config.graph.num_nearest_neighbours,
    sentence_to_articles=sentence_to_articles).toarray()
fin3 = time.time()
print("KNN done", fin3 - fin)

if config.learning.method_learning == "FaBP":
    # classe  b(i){> 0, < 0} means i ∈ {“+”, “-”}
    beliefs = solve(graph, labels[:])
    fin4 = time.time()
    print("FaBP done", fin4 - fin3)
elif config.learning.method_learning in ["SVM", "RF"]:
    training_mask = labels > 0
    test_mask = labels == 0
    training_set = C[training_mask, :]
    l = labels[training_mask]
    l[l == 2] = -1
    print("Fitting")
    if config.learning.method_learning == "SVM":
        clf = svm.SVC(gamma='scale')
    else:  # Random forest
        clf = RandomForestClassifier(n_estimators=100,
                                     max_depth=2,
                                     random_state=0)
コード例 #22
0
        r4 = r2 | 0x10000  # 6
        r2 = 6718165       # 7

        i = 0
        while True:
            r3 = r4 & 0xff  # 8
            r2 = (((r2 + r3) & 0xffffff) * 65899) & 0xffffff  # 9 - 12
            if 256 > r4:  # 13 - 16
                break
            r4, _ = divmod(r4, 256)  # 17 - 26
            i += 1

        if part1:
            return r2
        if r2 in seen:
            return p
        seen.add(r2)
        p = r2


def p1(_):
    return terminate()


def p2(_):
    return terminate(False)


if __name__ == "__main__":
    solve([], lambda x: x, p1, p2)
コード例 #23
0
                continue
            connections[u].add(v)
            connections[v].add(u)

    resolved = set()
    constellations = 0

    for star in lines:
        if star in resolved:
            continue

        constellations += 1
        q = [star]
        while q:
            u = heapq.heappop(q)
            if u in resolved:
                continue
            resolved.add(u)
            for v in connections[u]:
                if v not in resolved:
                    heapq.heappush(q, v)
    return constellations


def p2(_):
    return None


if __name__ == "__main__":
    solve(sys.argv, lambda l: tuple(int_list_line(l, ',')), p1, p2)
コード例 #24
0
ファイル: main.py プロジェクト: fstakoviak/Udacity-AIND
import utils

if __name__ == '__main__':

    # Array of grids in string form
    grids = [
        '4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......',
        '..5.......32..695..8..1..23.2.........7...4.........6.54..2..8..963..27.......5..',
        '1.4.9..68956.18.34..84.695151.....868..6...1264..8..97781923645495.6.823.6.854179',
        '5....26...9..5.84..439.6....1...4.5.....1.....6.2...7....8.956..54.3..8...61....9',
        '5.9.2..1.4...56...8..9.3..5.87..25..654....82..15684971.82.5...7..68...3.4..7.8..',
        '.4......8...7...5...8.......213.......9...6.......457.......9...1...9...9......1.',
        '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3',
        '9.1....8.8.5.7..4.2.4....6...7......5..............83.3..6......9................',
        '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3',
        '9.1....8.8.5.7..4.2.4....6...7......5..............83.3..6......9................'
    ]

    for grid in grids:
        values = utils.solve(grid)
        utils.display(values)
        print('\n=====================\n')