コード例 #1
0
def SDSP(img, sigmaF, omega0, sigmaD, sigmaC):
    B, C, rows, cols = img.shape

    lab = rgb_to_lab_NCHW(img / 255)
    LChannel, AChannel, BChannel = lab[:, 0, :, :].unsqueeze(
        1), lab[:, 1, :, :].unsqueeze(1), lab[:, 2, :, :].unsqueeze(1)
    LFFT = torch.rfft(LChannel, 2, onesided=False)
    AFFT = torch.rfft(AChannel, 2, onesided=False)
    BFFT = torch.rfft(BChannel, 2, onesided=False)

    LG = logGabor(rows, cols, omega0, sigmaF)
    LG = torch.from_numpy(LG).reshape(1, 1, rows, cols,
                                      1).repeat(B, 1, 1, 1,
                                                2).float().to(img.device)

    FinalLResult = real(torch.ifft(LFFT * LG, 2))
    FinalAResult = real(torch.ifft(AFFT * LG, 2))
    FinalBResult = real(torch.ifft(BFFT * LG, 2))

    SFMap = torch.sqrt(FinalLResult**2 + FinalAResult**2 + FinalBResult**2 +
                       eps)

    coordinateMtx = torch.from_numpy(np.arange(0, rows)).float().reshape(
        1, 1, rows, 1).repeat(B, 1, 1, cols).to(img.device)
    centerMtx = torch.ones_like(coordinateMtx) * rows / 2
    coordinateMty = torch.from_numpy(np.arange(0, cols)).float().reshape(
        1, 1, 1, cols).repeat(B, 1, rows, 1).to(img.device)
    centerMty = torch.ones_like(coordinateMty) * cols / 2
    SDMap = torch.exp(-((coordinateMtx - centerMtx)**2 +
                        (coordinateMty - centerMty)**2) / (sigmaD**2))

    normalizedA = spatial_normalize(AChannel)

    normalizedB = spatial_normalize(BChannel)

    labDistSquare = normalizedA**2 + normalizedB**2
    SCMap = 1 - torch.exp(-labDistSquare / (sigmaC**2))
    VSMap = SFMap * SDMap * SCMap

    normalizedVSMap = spatial_normalize(VSMap)
    return normalizedVSMap
コード例 #2
0
def test(val_loader,disp_net,mask_net,pose_net, flow_net, tb_writer,global_vars_dict = None):
#data prepared
    device = global_vars_dict['device']
    n_iter_val = global_vars_dict['n_iter_val']
    args = global_vars_dict['args']


    data_time = AverageMeter()


# to eval model
    disp_net.eval()
    pose_net.eval()
    mask_net.eval()
    flow_net.eval()

    end = time.time()
    poses = np.zeros(((len(val_loader)-1) * 1 * (args.sequence_length-1),6))#init

    disp_list = []

    flow_list = []
    mask_list = []

#3. validation cycle
    for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv) in tqdm(enumerate(val_loader)):
        data_time.update(time.time() - end)
        tgt_img = tgt_img.to(device)
        ref_imgs = [img.to(device) for img in ref_imgs]
        intrinsics,intrinsics_inv = intrinsics.to(device),intrinsics_inv.to(device)
    #3.1 forwardpass
        #disp
        disp = disp_net(tgt_img)
        if args.spatial_normalize:
            disp = spatial_normalize(disp)
        depth = 1 / disp

        #pose
        pose = pose_net(tgt_img, ref_imgs)
        #flow----
        #制作前后一帧的
        if args.flownet == 'Back2Future':
            flow_fwd, flow_bwd, _ = flow_net(tgt_img, ref_imgs[1:3])
        elif args.flownet == 'FlowNetC6':
            flow_fwd = flow_net(tgt_img, ref_imgs[2])
            flow_bwd = flow_net(tgt_img, ref_imgs[1])
        #FLOW FWD [B,2,H,W]
        #flow cam :tensor[b,2,h,w]
        #flow_background
        flow_cam = pose2flow(depth.squeeze(1), pose[:, 2], intrinsics, intrinsics_inv)

        flows_cam_fwd = pose2flow(depth.squeeze(1), pose[:, 2], intrinsics, intrinsics_inv)
        flows_cam_bwd = pose2flow(depth.squeeze(1), pose[:, 1], intrinsics, intrinsics_inv)

        #exp_masks_target = consensus_exp_masks(flows_cam_fwd, flows_cam_bwd, flow_fwd, flow_bwd, tgt_img,
        #                                       ref_imgs[2], ref_imgs[1], wssim=args.wssim, wrig=args.wrig,
        #                                       ws=args.smooth_loss_weight)

        rigidity_mask_fwd = (flows_cam_fwd - flow_fwd).abs()#[b,2,h,w]
        rigidity_mask_bwd = (flows_cam_bwd - flow_bwd).abs()

        # mask
        # 4.explainability_mask(none)
        explainability_mask = mask_net(tgt_img, ref_imgs)  # 有效区域?4??

        # list(5):item:tensor:[4,4,128,512]...[4,4,4,16] value:[0.33~0.48~0.63]
        end = time.time()


    #3.4 check log

        #查看forward pass效果
    # 2 disp
        disp_to_show =tensor2array(disp[0].cpu(), max_value=None,colormap='bone')# tensor disp_to_show :[1,h,w],0.5~3.1~10
        tb_writer.add_image('Disp/disp0', disp_to_show,i)
        disp_list.append(disp_to_show)

        if i == 0:
            disp_arr =  np.expand_dims(disp_to_show,axis=0)
        else:
            disp_to_show = np.expand_dims(disp_to_show,axis=0)
            disp_arr = np.concatenate([disp_arr,disp_to_show],0)


    #3. flow
        tb_writer.add_image('Flow/Flow Output', flow2rgb(flow_fwd[0], max_value=6),i)
        tb_writer.add_image('Flow/cam_Flow Output', flow2rgb(flow_cam[0], max_value=6),i)
        tb_writer.add_image('Flow/rigid_Flow Output', flow2rgb(rigidity_mask_fwd[0], max_value=6),i)
        tb_writer.add_image('Flow/rigidity_mask_fwd',flow2rgb(rigidity_mask_fwd[0],max_value=6),i)
        flow_list.append(flow2rgb(flow_fwd[0], max_value=6))
    #4. mask
        tb_writer.add_image('Mask /mask0',tensor2array(explainability_mask[0][0], max_value=None, colormap='magma'), i)
        #tb_writer.add_image('Mask Output/mask1 sample{}'.format(i),tensor2array(explainability_mask[1][0], max_value=None, colormap='magma'), epoch)
        #tb_writer.add_image('Mask Output/mask2 sample{}'.format(i),tensor2array(explainability_mask[2][0], max_value=None, colormap='magma'), epoch)
        #tb_writer.add_image('Mask Output/mask3 sample{}'.format(i),tensor2array(explainability_mask[3][0], max_value=None, colormap='magma'), epoch)
        mask_list.append(tensor2array(explainability_mask[0][0], max_value=None, colormap='magma'))
    #

    return disp_list,disp_arr,flow_list,mask_list
コード例 #3
0
def train_depth_gt(train_loader,
                   disp_net,
                   optimizer,
                   criterion,
                   logger=None,
                   train_writer=None,
                   global_vars_dict=None):
    # 0. 准备
    args = global_vars_dict['args']
    n_iter = global_vars_dict['n_iter']
    device = global_vars_dict['device']

    batch_time = AverageMeter()
    data_time = AverageMeter()
    loss_names = ['total_loss', 'l1_loss', 'smooth']
    losses = AverageMeter(precision=4, i=len(loss_names))
    w1, w2 = args.gt_loss_weight, args.smooth_loss_weight
    loss_l1 = MaskedL1Loss().to(device)

    #2. switch to train mode
    disp_net.train()
    #pose_net.train()
    #mask_net.train()
    #flow_net.train()

    end = time.time()

    #3. train cycle
    numel = args.batch_size * 1 * 256 * 512

    #main cycle
    for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv,
            gt_depth) in enumerate(train_loader):
        # measure data loading time

        data_time.update(time.time() - end)
        #dat
        tgt_img = tgt_img.to(device)
        ref_imgs = [(img.to(device)) for img in ref_imgs]
        intrinsics = intrinsics.to(device)
        intrinsics_inv = intrinsics_inv.to(device)
        gt_depth = gt_depth.to(device)  #[0~1]

        #gt

        disparities = disp_net(tgt_img)
        if args.spatial_normalize:
            disparities = [spatial_normalize(disp)
                           for disp in disparities]  #[0.4,2.7,8.7]

        output_depth = [1 / disp for disp in disparities]

        #output_depth = output_depth[0]#只保留最大尺度

        # compute gradient and do Adam step
        # pre_histcs=[]
        # gt_histcs=[]
        # for depth in output_depth:
        #     pre_histcs.append(torch.histc(depth,bins=100,min=0,max=1))

        loss1 = loss_l1(gt_depth, output_depth)
        loss2 = smooth_loss(output_depth)
        loss = w1 * loss1 + w2 * loss2

        loss.requires_grad_()
        loss.to(device)

        losses.update([loss.item(), loss1.item(),
                       loss2.item()], args.batch_size)
        #plt.imshow(tensor2array(output_depth[0],out_shape='HWC',colormap='bone'))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        #log terminal
        if args.log_terminal:
            logger.train_logger_update(batch=i,
                                       time=batch_time,
                                       names=loss_names,
                                       values=losses)

    #3.4 log data#只在train这里输出batch data 尽早看看能否学习
        train_writer.add_scalar('batch/l2_loss', loss.item(), n_iter)

        # 3.4 edge conditions
        epoch_size = len(train_loader)
        if i >= epoch_size - 1:
            break

        n_iter += 1

    global_vars_dict['n_iter'] = n_iter
    return loss_names, losses  #epoch loss
コード例 #4
0
def train_gt_ngt(train_loader,
                 disp_net,
                 pose_net,
                 mask_net,
                 flow_net,
                 optimizer,
                 logger=None,
                 train_writer=None,
                 global_vars_dict=None):
    # 0. 准备
    args = global_vars_dict['args']
    n_iter = global_vars_dict['n_iter']
    device = global_vars_dict['device']

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter(precision=4)
    w1, w2, w3, w4 = args.cam_photo_loss_weight, args.mask_loss_weight, args.smooth_loss_weight, args.flow_photo_loss_weight
    w5 = args.consensus_loss_weight

    if args.robust:
        loss_camera = photometric_reconstruction_loss_robust
        loss_flow = photometric_flow_loss_robust
    else:
        loss_camera = photometric_reconstruction_loss
        loss_flow = photometric_flow_loss


#2. switch to train mode
    disp_net.train()
    pose_net.train()
    mask_net.train()
    flow_net.train()

    end = time.time()
    criterion = MaskedL1Loss().to(device)  #l1LOSS 容易优化
    criterion2 = HistgramLoss().to(device)
    #3. train cycle
    numel = args.batch_size * 1 * 256 * 512
    for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv,
            gt_depth) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)
        #dat
        tgt_img = tgt_img.to(device)
        ref_imgs = [(img.to(device)) for img in ref_imgs]
        intrinsics = intrinsics.to(device)
        intrinsics_inv = intrinsics_inv.to(device)
        gt_depth = gt_depth.to(device)

        #gt

        #3.1 compute output and lossfunc input valve---------------------

        #1. disp->depth(none)
        disparities = disp_net(tgt_img)
        if args.spatial_normalize:
            disparities = [spatial_normalize(disp) for disp in disparities]

        output_depth = [1 / disp for disp in disparities]

        output_depth = output_depth[0]  #只保留最大尺度

        #end of loss

        # compute gradient and do Adam step

        loss1 = criterion(gt_depth, output_depth)
        #loss2 = criterion2(gt_depth,output_depth)
        loss = loss1
        loss.requires_grad_()
        loss.to(device)

        losses.update(loss.item(), args.batch_size)
        #plt.imshow(tensor2array(output_depth[0],out_shape='HWC',colormap='bone'))
        #
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        #3.4 log data
        train_writer.add_scalar('batch/epe_loss', loss1.item(), n_iter)
        #train_writer.add_scalar('batch/historgram_loss', loss2.item(), n_iter)

        # add scalar

        # 3.4 edge conditionsssssssssssssssssssssssss
        epoch_size = len(train_loader)
        if i >= epoch_size - 1:
            break

        n_iter += 1

    global_vars_dict['n_iter'] = n_iter
    return losses.avg[0]  #epoch loss
コード例 #5
0
def train(train_loader,
          disp_net,
          pose_net,
          mask_net,
          flow_net,
          optimizer,
          logger=None,
          train_writer=None,
          global_vars_dict=None):
    # 0. 准备
    args = global_vars_dict['args']
    n_iter = global_vars_dict['n_iter']
    device = global_vars_dict['device']

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter(precision=4)
    w1, w2, w3, w4 = args.cam_photo_loss_weight, args.mask_loss_weight, args.smooth_loss_weight, args.flow_photo_loss_weight
    w5 = args.consensus_loss_weight

    if args.robust:
        loss_camera = photometric_reconstruction_loss_robust
        loss_flow = photometric_flow_loss_robust
    else:
        loss_camera = photometric_reconstruction_loss
        loss_flow = photometric_flow_loss


#2. switch to train mode
    disp_net.train()
    pose_net.train()
    mask_net.train()
    flow_net.train()

    end = time.time()
    #3. train cycle
    for i, (tgt_img, ref_imgs, intrinsics,
            intrinsics_inv) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)
        tgt_img = tgt_img.to(device)
        ref_imgs = [img.to(device) for img in ref_imgs]
        intrinsics = intrinsics.to(device)
        intrinsics_inv = intrinsics_inv.to(device)

        #3.1 compute output and lossfunc input valve---------------------

        #1. disp->depth(none)
        disparities = disp_net(tgt_img)
        if args.spatial_normalize:
            disparities = [spatial_normalize(disp) for disp in disparities]

        depth = [1 / disp for disp in disparities]

        #2. pose(none)
        pose = pose_net(tgt_img, ref_imgs)
        #pose:[4,4,6]

        #3.flow_fwd,flow_bwd 全光流 (depth, pose)
        # 自己改了一点
        if args.flownet == 'Back2Future':  #临近一共三帧做训练/推断
            flow_fwd, flow_bwd, _ = flow_net(tgt_img, ref_imgs[1:3])
        elif args.flownet == 'FlowNetC6':
            flow_fwd = flow_net(tgt_img, ref_imgs[2])
            flow_bwd = flow_net(tgt_img, ref_imgs[1])
        elif args.flownet == 'FlowNetS':
            print(' ')

        # flow_cam 即背景光流
        # flow - flow_s = flow_o
        flow_cam = pose2flow(
            depth[0].squeeze(), pose[:, 2], intrinsics,
            intrinsics_inv)  # pose[:,2] belongs to forward frame
        flows_cam_fwd = [
            pose2flow(depth_.squeeze(1), pose[:, 2], intrinsics,
                      intrinsics_inv) for depth_ in depth
        ]
        flows_cam_bwd = [
            pose2flow(depth_.squeeze(1), pose[:, 1], intrinsics,
                      intrinsics_inv) for depth_ in depth
        ]

        exp_masks_target = consensus_exp_masks(flows_cam_fwd,
                                               flows_cam_bwd,
                                               flow_fwd,
                                               flow_bwd,
                                               tgt_img,
                                               ref_imgs[2],
                                               ref_imgs[1],
                                               wssim=args.wssim,
                                               wrig=args.wrig,
                                               ws=args.smooth_loss_weight)
        rigidity_mask_fwd = [
            (flows_cam_fwd_i - flow_fwd_i).abs()
            for flows_cam_fwd_i, flow_fwd_i in zip(flows_cam_fwd, flow_fwd)
        ]  # .normalize()
        rigidity_mask_bwd = [
            (flows_cam_bwd_i - flow_bwd_i).abs()
            for flows_cam_bwd_i, flow_bwd_i in zip(flows_cam_bwd, flow_bwd)
        ]  # .normalize()
        #v_u

        # 4.explainability_mask(none)
        explainability_mask = mask_net(tgt_img, ref_imgs)  #有效区域?4??
        #list(5):item:tensor:[4,4,128,512]...[4,4,4,16] value:[0.33~0.48~0.63]
        #-------------------------------------------------

        if args.joint_mask_for_depth:
            explainability_mask_for_depth = compute_joint_mask_for_depth(
                explainability_mask, rigidity_mask_bwd, rigidity_mask_fwd,
                args.THRESH)
        else:
            explainability_mask_for_depth = explainability_mask
        #explainability_mask_for_depth list(5) [b,2,h/ , w/]
        if args.no_non_rigid_mask:
            flow_exp_mask = [None for exp_mask in explainability_mask]
            if args.DEBUG:
                print('Using no masks for flow')
        else:
            flow_exp_mask = [
                1 - exp_mask[:, 1:3] for exp_mask in explainability_mask
            ]
            # explaninbility mask 本来是背景mask, 背景对应像素为1
            #取反改成动物mask,并且只要前后两帧
            #list(4) [4,2,256,512]

    #3.2. compute loss重

    # E-r minimizes the photometric loss on static scene
        if w1 > 0:
            loss_1 = loss_camera(tgt_img,
                                 ref_imgs,
                                 intrinsics,
                                 intrinsics_inv,
                                 depth,
                                 explainability_mask_for_depth,
                                 pose,
                                 lambda_oob=args.lambda_oob,
                                 qch=args.qch,
                                 wssim=args.wssim)
        else:
            loss_1 = torch.tensor([0.]).to(device)
        # E_M
        if w2 > 0:
            loss_2 = explainability_loss(
                explainability_mask
            )  #+ 0.2*gaussian_explainability_loss(explainability_mask)
        else:
            loss_2 = 0
        # E_S
        if w3 > 0:
            if args.smoothness_type == "regular":
                loss_3 = smooth_loss(depth) + smooth_loss(
                    flow_fwd) + smooth_loss(flow_bwd) + smooth_loss(
                        explainability_mask)
            elif args.smoothness_type == "edgeaware":
                loss_3 = edge_aware_smoothness_loss(
                    tgt_img, depth) + edge_aware_smoothness_loss(
                        tgt_img, flow_fwd)
                loss_3 += edge_aware_smoothness_loss(
                    tgt_img, flow_bwd) + edge_aware_smoothness_loss(
                        tgt_img, explainability_mask)
        else:
            loss_3 = torch.tensor([0.]).to(device)
        # E_F
        # minimizes photometric loss on moving regions

        if w4 > 0:
            loss_4 = loss_flow(tgt_img,
                               ref_imgs[1:3], [flow_bwd, flow_fwd],
                               flow_exp_mask,
                               lambda_oob=args.lambda_oob,
                               qch=args.qch,
                               wssim=args.wssim)
        else:
            loss_4 = torch.tensor([0.]).to(device)
        # E_C
        # drives the collaboration
        #explainagy_mask:list(6) of [4,4,4,16] rigidity_mask :list(4):[4,2,128,512]
        if w5 > 0:
            loss_5 = consensus_depth_flow_mask(explainability_mask,
                                               rigidity_mask_bwd,
                                               rigidity_mask_fwd,
                                               exp_masks_target,
                                               exp_masks_target,
                                               THRESH=args.THRESH,
                                               wbce=args.wbce)
        else:
            loss_5 = torch.tensor([0.]).to(device)

        #3.2.6
        loss = w1 * loss_1 + w2 * loss_2 + w3 * loss_3 + w4 * loss_4 + w5 * loss_5
        #end of loss

        #3.3
        # record loss and EPE
        losses.update(loss.item(), args.batch_size)

        # compute gradient and do Adam step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        #3.4 log data

        # add scalar
        if args.scalar_freq > 0 and n_iter % args.scalar_freq == 0:
            train_writer.add_scalar('batch/cam_photometric_error',
                                    loss_1.item(), n_iter)
            if w2 > 0:
                train_writer.add_scalar('batch/explanability_loss',
                                        loss_2.item(), n_iter)
            train_writer.add_scalar('batch/disparity_smoothness_loss',
                                    loss_3.item(), n_iter)
            train_writer.add_scalar('batch/flow_photometric_error',
                                    loss_4.item(), n_iter)
            train_writer.add_scalar('batch/consensus_error', loss_5.item(),
                                    n_iter)
            train_writer.add_scalar('batch/total_loss', loss.item(), n_iter)

        # add_image为0 则不输出
        if args.training_output_freq > 0 and n_iter % args.training_output_freq == 0:

            train_writer.add_image('train Input', tensor2array(tgt_img[0]),
                                   n_iter)
            train_writer.add_image(
                'train Cam Flow Output',
                flow_to_image(tensor2array(flow_cam.data[0].cpu())), n_iter)

            for k, scaled_depth in enumerate(depth):
                train_writer.add_image(
                    'train Dispnet Output Normalized111 {}'.format(k),
                    tensor2array(disparities[k].data[0].cpu(),
                                 max_value=None,
                                 colormap='bone'), n_iter)
                train_writer.add_image(
                    'train Depth Output {}'.format(k),
                    tensor2array(1 / disparities[k].data[0].cpu(),
                                 max_value=10), n_iter)
                train_writer.add_image(
                    'train Non Rigid Flow Output {}'.format(k),
                    flow_to_image(tensor2array(flow_fwd[k].data[0].cpu())),
                    n_iter)
                train_writer.add_image(
                    'train Target Rigidity {}'.format(k),
                    tensor2array((rigidity_mask_fwd[k] > args.THRESH).type_as(
                        rigidity_mask_fwd[k]).data[0].cpu(),
                                 max_value=1,
                                 colormap='bone'), n_iter)

                b, _, h, w = scaled_depth.size()
                downscale = tgt_img.size(2) / h

                tgt_img_scaled = nn.functional.adaptive_avg_pool2d(
                    tgt_img, (h, w))
                ref_imgs_scaled = [
                    nn.functional.adaptive_avg_pool2d(ref_img, (h, w))
                    for ref_img in ref_imgs
                ]

                intrinsics_scaled = torch.cat(
                    (intrinsics[:, 0:2] / downscale, intrinsics[:, 2:]), dim=1)
                intrinsics_scaled_inv = torch.cat(
                    (intrinsics_inv[:, :, 0:2] * downscale,
                     intrinsics_inv[:, :, 2:]),
                    dim=2)

                train_writer.add_image(
                    'train Non Rigid Warped Image {}'.format(k),
                    tensor2array(
                        flow_warp(ref_imgs_scaled[2],
                                  flow_fwd[k]).data[0].cpu()), n_iter)

                # log warped images along with explainability mask
                for j, ref in enumerate(ref_imgs_scaled):
                    ref_warped = inverse_warp(
                        ref,
                        scaled_depth[:, 0],
                        pose[:, j],
                        intrinsics_scaled,
                        intrinsics_scaled_inv,
                        rotation_mode=args.rotation_mode,
                        padding_mode=args.padding_mode)[0]
                    train_writer.add_image(
                        'train Warped Outputs {} {}'.format(k, j),
                        tensor2array(ref_warped.data.cpu()), n_iter)
                    train_writer.add_image(
                        'train Diff Outputs {} {}'.format(k, j),
                        tensor2array(
                            0.5 *
                            (tgt_img_scaled[0] - ref_warped).abs().data.cpu()),
                        n_iter)
                    if explainability_mask[k] is not None:
                        train_writer.add_image(
                            'train Exp mask Outputs {} {}'.format(k, j),
                            tensor2array(explainability_mask[k][0,
                                                                j].data.cpu(),
                                         max_value=1,
                                         colormap='bone'), n_iter)

        # csv file write
        with open(args.save_path / args.log_full, 'a') as csvfile:
            writer = csv.writer(csvfile, delimiter='\t')
            writer.writerow([
                loss.item(),
                loss_1.item(),
                loss_2.item() if w2 > 0 else 0,
                loss_3.item(),
                loss_4.item()
            ])
        #terminal output
        if args.log_terminal:
            logger.train_bar.update(i + 1)  #当前epoch 进度
            if i % args.print_freq == 0:
                logger.valid_bar_writer.write(
                    'Train: Time {} Data {} Loss {}'.format(
                        batch_time, data_time, losses))

    # 3.4 edge conditionsssssssssssssssssssssssss
        epoch_size = len(train_loader)
        if i >= epoch_size - 1:
            break

        n_iter += 1

    global_vars_dict['n_iter'] = n_iter
    return losses.avg[0]  #epoch loss
コード例 #6
0
def validate_depth_with_gt(val_loader,
                           disp_net,
                           criterion,
                           epoch,
                           logger,
                           tb_writer,
                           global_vars_dict=None):
    device = global_vars_dict['device']
    args = global_vars_dict['args']
    n_iter_val_depth = global_vars_dict['n_iter_val_depth']

    show_samples = copy.deepcopy(args.show_samples)
    for i in range(len(show_samples)):
        show_samples[i] *= len(val_loader)
        show_samples[i] = show_samples[i] // 1

    batch_time = AverageMeter()
    error_names = ['abs_diff', 'abs_rel', 'sq_rel', 'a1', 'a2', 'a3']
    errors = AverageMeter(i=len(error_names), precision=3)

    # switch to evaluate mode
    disp_net.eval()

    end = time.time()
    fig = plt.figure(1, figsize=(8, 6))
    #criterion = MaskedL1Loss().to(device)#l1LOSS 容易优化

    for i, (tgt_img, depth_gt) in enumerate(val_loader):

        tgt_img = tgt_img.to(device)  #BCHW
        depth_gt = depth_gt.to(device)

        output_disp = disp_net(tgt_img)  #BCHW
        if args.spatial_normalize:
            output_disp = spatial_normalize(output_disp)

        output_depth = 255 / output_disp

        #err = compute_errors2(depth_gt.data.squeeze(1),output_depth.data.squeeze(1))
        err = compute_errors(gt=depth_gt.data.squeeze(1),
                             pred=output_depth.data.squeeze(1),
                             crop=False)

        ver_gt = VGSmap(depth_gt)
        ver_pre = VGSmap(output_depth)

        errors.update(err)

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        fig = plt.figure(1, figsize=(8, 6))
        if args.img_freq > 0 and i in show_samples:  #output_writers list(3)
            if epoch == 0:  #训练前的validate,目的在于先评估下网络效果
                #1.img
                # 不会执行第二次,注意ref_imgs axis0是batch的索引; axis 1是list(adjacent frame)的索引!
                tb_writer.add_image('epoch 0 Input/sample{}'.format(i),
                                    tensor2array(tgt_img[0]), 0)
                tb_writer.add_image('epoch 0 depth_gt/sample{}'.format(i),
                                    tensor2array(depth_gt[0], colormap='bone'),
                                    0)
                tb_writer.add_image(
                    'Depth Output/sample{}'.format(i),
                    tensor2array(output_depth[0],
                                 max_value=None,
                                 colormap='bone'), 0)

                plt.hist(tensor2array(depth_gt[0], colormap='bone').flatten() *
                         256,
                         256, [0, 256],
                         color='r')
                tb_writer.add_figure(tag='histogram_gt/sample{}'.format(i),
                                     figure=fig,
                                     global_step=0)

            else:
                #2.disp
                # tensor disp_to_show :[1,h,w],0.5~3.1~10
                #disp2show = tensor2array(output_disp[0], max_value=None,colormap='bone')
                depth2show = tensor2array(output_depth[0],
                                          max_value=None,
                                          colormap='bone')
                #tb_writer.add_image('Disp Output/sample{}'.format(i), disp2show, epoch)
                tb_writer.add_image('Depth Output/sample{}'.format(i),
                                    depth2show, epoch)
                #add_figure

                plt.hist(depth2show.flatten() * 256, 256, [0, 256], color='r')
                tb_writer.add_figure(tag='histogram_sample/sample{}'.format(i),
                                     figure=fig,
                                     global_step=epoch)

        # add scalar
        if args.scalar_freq > 0 and n_iter_val_depth % args.scalar_freq == 0:
            pass
            #h_loss =HistgramLoss()(tgt_img,depth_gt)
            #tb_writer.add_scalar('batch/val_h_loss' ,h_loss, n_iter_val_depth)
            #tb_writer.add_scalar('batch/' + error_names[1], errors.val[1], n_iter_val_depth)
            #tb_writer.add_scalar('batch/' + error_names[2], errors.val[2], n_iter_val_depth)
            #tb_writer.add_scalar('batch/' + error_names[3], errors.val[3], n_iter_val_depth)
            #tb_writer.add_scalar('batch/' + error_names[4], errors.val[4], n_iter_val_depth)
            #tb_writer.add_scalar('batch/' + error_names[5], errors.val[5], n_iter_val_depth)

        if args.log_terminal:
            logger.valid_logger_update(batch=i,
                                       time=batch_time,
                                       names=error_names,
                                       values=errors)

        n_iter_val_depth += 1
        #end for
    #if args.log_terminal:
    #    logger.valid_bar.update(len(val_loader))

    global_vars_dict['n_iter_val_depth'] = n_iter_val_depth

    return error_names, errors
コード例 #7
0
def validate_without_gt(val_loader,
                        disp_net,
                        pose_net,
                        mask_net,
                        flow_net,
                        epoch,
                        logger,
                        tb_writer,
                        nb_writers,
                        global_vars_dict=None):
    #data prepared
    device = global_vars_dict['device']
    n_iter_val = global_vars_dict['n_iter_val']
    args = global_vars_dict['args']
    show_samples = copy.deepcopy(args.show_samples)
    for i in range(len(show_samples)):
        show_samples[i] *= len(val_loader)
        show_samples[i] = show_samples[i] // 1

    batch_time = AverageMeter()
    data_time = AverageMeter()
    log_outputs = nb_writers > 0
    losses = AverageMeter(precision=4)

    w1, w2, w3, w4 = args.cam_photo_loss_weight, args.mask_loss_weight, args.smooth_loss_weight, args.flow_photo_loss_weight
    w5 = args.consensus_loss_weight

    loss_camera = photometric_reconstruction_loss
    loss_flow = photometric_flow_loss

    # to eval model
    disp_net.eval()
    pose_net.eval()
    mask_net.eval()
    flow_net.eval()

    end = time.time()
    poses = np.zeros(
        ((len(val_loader) - 1) * 1 * (args.sequence_length - 1), 6))  #init

    #3. validation cycle
    for i, (tgt_img, ref_imgs, intrinsics,
            intrinsics_inv) in enumerate(val_loader):
        data_time.update(time.time() - end)
        tgt_img = tgt_img.to(device)
        ref_imgs = [img.to(device) for img in ref_imgs]
        intrinsics, intrinsics_inv = intrinsics.to(device), intrinsics_inv.to(
            device)
        #3.1 forwardpass
        #disp
        disp = disp_net(tgt_img)
        if args.spatial_normalize:
            disp = spatial_normalize(disp)
        depth = 1 / disp

        #pose
        pose = pose_net(tgt_img, ref_imgs)  #[b,3,h,w]; list

        #flow----
        #制作前后一帧的
        if args.flownet == 'Back2Future':
            flow_fwd, flow_bwd, _ = flow_net(tgt_img, ref_imgs[1:3])
        elif args.flownet == 'FlowNetC6':
            flow_fwd = flow_net(tgt_img, ref_imgs[2])
            flow_bwd = flow_net(tgt_img, ref_imgs[1])
        flow_cam = pose2flow(depth.squeeze(1), pose[:, 2], intrinsics,
                             intrinsics_inv)

        flows_cam_fwd = pose2flow(depth.squeeze(1), pose[:, 2], intrinsics,
                                  intrinsics_inv)
        flows_cam_bwd = pose2flow(depth.squeeze(1), pose[:, 1], intrinsics,
                                  intrinsics_inv)

        exp_masks_target = consensus_exp_masks(flows_cam_fwd,
                                               flows_cam_bwd,
                                               flow_fwd,
                                               flow_bwd,
                                               tgt_img,
                                               ref_imgs[2],
                                               ref_imgs[1],
                                               wssim=args.wssim,
                                               wrig=args.wrig,
                                               ws=args.smooth_loss_weight)
        no_rigid_flow = flow_fwd - flows_cam_fwd

        rigidity_mask_fwd = (flows_cam_fwd - flow_fwd).abs()  #[b,2,h,w]
        rigidity_mask_bwd = (flows_cam_bwd - flow_bwd).abs()

        # mask
        # 4.explainability_mask(none)
        explainability_mask = mask_net(tgt_img, ref_imgs)  # 有效区域?4??

        # list(5):item:tensor:[4,4,128,512]...[4,4,4,16] value:[0.33~0.48~0.63]

        if args.joint_mask_for_depth:  # false
            explainability_mask_for_depth = explainability_mask

            #explainability_mask_for_depth = compute_joint_mask_for_depth(explainability_mask, rigidity_mask_bwd,
            #                                                            rigidity_mask_fwd,THRESH=args.THRESH)
        else:
            explainability_mask_for_depth = explainability_mask

        # chage

        if args.no_non_rigid_mask:
            flow_exp_mask = None
            if args.DEBUG:
                print('Using no masks for flow')
        else:
            flow_exp_mask = 1 - explainability_mask[:, 1:3]

        #3.2loss-compute
        if w1 > 0:
            loss_1 = loss_camera(tgt_img,
                                 ref_imgs,
                                 intrinsics,
                                 intrinsics_inv,
                                 depth,
                                 explainability_mask_for_depth,
                                 pose,
                                 lambda_oob=args.lambda_oob,
                                 qch=args.qch,
                                 wssim=args.wssim)
        else:
            loss_1 = torch.tensor([0.]).to(device)

        # E_M
        if w2 > 0:
            loss_2 = explainability_loss(
                explainability_mask
            )  # + 0.2*gaussian_explainability_loss(explainability_mask)
        else:
            loss_2 = 0

        #if args.smoothness_type == "regular":
        if w3 > 0:
            loss_3 = smooth_loss(depth) + smooth_loss(
                explainability_mask) + smooth_loss(flow_fwd) + smooth_loss(
                    flow_bwd)
        else:
            loss_3 = torch.tensor([0.]).to(device)
        if w4 > 0:
            loss_4 = loss_flow(tgt_img,
                               ref_imgs[1:3], [flow_bwd, flow_fwd],
                               flow_exp_mask,
                               lambda_oob=args.lambda_oob,
                               qch=args.qch,
                               wssim=args.wssim)
        else:
            loss_4 = torch.tensor([0.]).to(device)
        if w5 > 0:
            loss_5 = consensus_depth_flow_mask(explainability_mask,
                                               rigidity_mask_bwd,
                                               rigidity_mask_fwd,
                                               exp_masks_target,
                                               exp_masks_target,
                                               THRESH=args.THRESH,
                                               wbce=args.wbce)
        else:
            loss_5 = torch.tensor([0.]).to(device)

        loss = w1 * loss_1 + w2 * loss_2 + w3 * loss_3 + w4 * loss_4 + w5 * loss_5

        #3.3 data update
        losses.update(loss.item(), args.batch_size)
        batch_time.update(time.time() - end)
        end = time.time()

        #3.4 check log

        #查看forward pass效果
        if args.img_freq > 0 and i in show_samples:  #output_writers list(3)
            if epoch == 0:  #训练前的validate,目的在于先评估下网络效果
                #1.img
                # 不会执行第二次,注意ref_imgs axis0是batch的索引; axis 1是list(adjacent frame)的索引!
                tb_writer.add_image(
                    'epoch 0 Input/sample{}(img{} to img{})'.format(
                        i, i + 1, i + args.sequence_length),
                    tensor2array(ref_imgs[0][0]), 0)
                tb_writer.add_image(
                    'epoch 0 Input/sample{}(img{} to img{})'.format(
                        i, i + 1, i + args.sequence_length),
                    tensor2array(ref_imgs[1][0]), 1)
                tb_writer.add_image(
                    'epoch 0 Input/sample{}(img{} to img{})'.format(
                        i, i + 1, i + args.sequence_length),
                    tensor2array(tgt_img[0]), 2)
                tb_writer.add_image(
                    'epoch 0 Input/sample{}(img{} to img{})'.format(
                        i, i + 1, i + args.sequence_length),
                    tensor2array(ref_imgs[2][0]), 3)
                tb_writer.add_image(
                    'epoch 0 Input/sample{}(img{} to img{})'.format(
                        i, i + 1, i + args.sequence_length),
                    tensor2array(ref_imgs[3][0]), 4)

                depth_to_show = depth[0].cpu(
                )  # tensor disp_to_show :[1,h,w],0.5~3.1~10
                tb_writer.add_image(
                    'Disp Output/sample{}'.format(i),
                    tensor2array(depth_to_show,
                                 max_value=None,
                                 colormap='bone'), 0)

            else:
                #2.disp
                depth_to_show = disp[0].cpu(
                )  # tensor disp_to_show :[1,h,w],0.5~3.1~10
                tb_writer.add_image(
                    'Disp Output/sample{}'.format(i),
                    tensor2array(depth_to_show,
                                 max_value=None,
                                 colormap='bone'), epoch)
                #3. flow
                tb_writer.add_image('Flow/Flow Output sample {}'.format(i),
                                    flow2rgb(flow_fwd[0], max_value=6), epoch)
                tb_writer.add_image('Flow/cam_Flow Output sample {}'.format(i),
                                    flow2rgb(flow_cam[0], max_value=6), epoch)
                tb_writer.add_image(
                    'Flow/no rigid flow Output sample {}'.format(i),
                    flow2rgb(no_rigid_flow[0], max_value=6), epoch)
                tb_writer.add_image(
                    'Flow/rigidity_mask_fwd{}'.format(i),
                    flow2rgb(rigidity_mask_fwd[0], max_value=6), epoch)

                #4. mask
                tb_writer.add_image(
                    'Mask Output/mask0 sample{}'.format(i),
                    tensor2array(explainability_mask[0][0],
                                 max_value=None,
                                 colormap='magma'), epoch)
                #tb_writer.add_image('Mask Output/mask1 sample{}'.format(i),tensor2array(explainability_mask[1][0], max_value=None, colormap='magma'), epoch)
                #tb_writer.add_image('Mask Output/mask2 sample{}'.format(i),tensor2array(explainability_mask[2][0], max_value=None, colormap='magma'), epoch)
                #tb_writer.add_image('Mask Output/mask3 sample{}'.format(i),tensor2array(explainability_mask[3][0], max_value=None, colormap='magma'), epoch)
                tb_writer.add_image(
                    'Mask Output/exp_masks_target sample{}'.format(i),
                    tensor2array(exp_masks_target[0][0],
                                 max_value=None,
                                 colormap='magma'), epoch)
                #tb_writer.add_image('Mask Output/mask0 sample{}'.format(i),
                #            tensor2array(explainability_mask[0][0], max_value=None, colormap='magma'), epoch)

        #

        #output_writers[index].add_image('val Depth Output', tensor2array(depth.data[0].cpu(), max_value=10),
        #                               epoch)

        # errors.update(compute_errors(depth, output_depth.data.squeeze(1)))
        # add scalar
        if args.scalar_freq > 0 and n_iter_val % args.scalar_freq == 0:
            tb_writer.add_scalar('val/E_R', loss_1.item(), n_iter_val)
            if w2 > 0:
                tb_writer.add_scalar('val/E_M', loss_2.item(), n_iter_val)
            tb_writer.add_scalar('val/E_S', loss_3.item(), n_iter_val)
            tb_writer.add_scalar('val/E_F', loss_4.item(), n_iter_val)
            tb_writer.add_scalar('val/E_C', loss_5.item(), n_iter_val)
            tb_writer.add_scalar('val/total_loss', loss.item(), n_iter_val)

        # terminal output
        if args.log_terminal:
            logger.valid_bar.update(i + 1)  # 当前epoch 进度
            if i % args.print_freq == 0:
                logger.valid_bar_writer.write(
                    'Valid: Time {} Data {} Loss {}'.format(
                        batch_time, data_time, losses))

        n_iter_val += 1

    global_vars_dict['n_iter_val'] = n_iter_val
    return losses.avg[0]  #epoch validate loss
コード例 #8
0
def validate_flow_with_gt(val_loader,
                          disp_net,
                          pose_net,
                          mask_net,
                          flow_net,
                          epoch,
                          logger,
                          output_writers=[]):
    global args
    batch_time = AverageMeter()
    error_names = [
        'epe_total', 'epe_rigid', 'epe_non_rigid', 'outliers',
        'epe_total_with_gt_mask', 'epe_rigid_with_gt_mask',
        'epe_non_rigid_with_gt_mask', 'outliers_gt_mask'
    ]
    errors = AverageMeter(i=len(error_names))
    log_outputs = len(output_writers) > 0

    # switch to evaluate mode
    disp_net.eval()
    pose_net.eval()
    mask_net.eval()
    flow_net.eval()

    end = time.time()

    poses = np.zeros(
        ((len(val_loader) - 1) * 1 * (args.sequence_length - 1), 6))

    for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv, flow_gt,
            obj_map_gt) in enumerate(val_loader):
        tgt_img = Variable(tgt_img.cuda(), volatile=True)
        ref_imgs = [Variable(img.cuda(), volatile=True) for img in ref_imgs]
        intrinsics_var = Variable(intrinsics.cuda(), volatile=True)
        intrinsics_inv_var = Variable(intrinsics_inv.cuda(), volatile=True)

        flow_gt_var = Variable(flow_gt.cuda(), volatile=True)
        obj_map_gt_var = Variable(obj_map_gt.cuda(), volatile=True)

        # compute output-------------------------

        #1. disp fwd
        disp = disp_net(tgt_img)
        if args.spatial_normalize:
            disp = spatial_normalize(disp)

        depth = 1 / disp

        #2. pose fwd
        pose = pose_net(tgt_img, ref_imgs)

        #3. mask fwd
        explainability_mask = mask_net(tgt_img, ref_imgs)

        #4. flow fwd
        if args.flownet == 'Back2Future':
            flow_fwd, flow_bwd, _ = flow_net(tgt_img, ref_imgs[1:3])  #前一帧,后一阵
        elif args.flownet == 'FlowNetC6':
            flow_fwd = flow_net(tgt_img, ref_imgs[2])
            flow_bwd = flow_net(tgt_img, ref_imgs[1])
        # compute output-------------------------

        if args.DEBUG:
            flow_fwd_x = flow_fwd[:, 0].view(-1).abs().data
            print("Flow Fwd Median: ", flow_fwd_x.median())
            flow_gt_var_x = flow_gt_var[:, 0].view(-1).abs().data
            print(
                "Flow GT Median: ",
                flow_gt_var_x.index_select(
                    0,
                    flow_gt_var_x.nonzero().view(-1)).median())

        flow_cam = pose2flow(depth.squeeze(1), pose[:, 2], intrinsics_var,
                             intrinsics_inv_var)
        oob_rigid = flow2oob(flow_cam)
        oob_non_rigid = flow2oob(flow_fwd)

        rigidity_mask = 1 - (1 - explainability_mask[:, 1]) * (
            1 - explainability_mask[:, 2]).unsqueeze(1) > 0.5

        rigidity_mask_census_soft = (flow_cam - flow_fwd).abs()  #.normalize()
        rigidity_mask_census_u = rigidity_mask_census_soft[:, 0] < args.THRESH
        rigidity_mask_census_v = rigidity_mask_census_soft[:, 1] < args.THRESH
        rigidity_mask_census = (rigidity_mask_census_u).type_as(flow_fwd) * (
            rigidity_mask_census_v).type_as(flow_fwd)

        rigidity_mask_combined = 1 - (
            1 - rigidity_mask.type_as(explainability_mask)) * (
                1 - rigidity_mask_census.type_as(explainability_mask))

        #get flow
        flow_fwd_non_rigid = (rigidity_mask_combined <= args.THRESH).type_as(
            flow_fwd).expand_as(flow_fwd) * flow_fwd
        flow_fwd_rigid = (rigidity_mask_combined > args.THRESH
                          ).type_as(flow_fwd).expand_as(flow_fwd) * flow_cam
        total_flow = flow_fwd_rigid + flow_fwd_non_rigid

        obj_map_gt_var_expanded = obj_map_gt_var.unsqueeze(1).type_as(flow_fwd)

        if log_outputs and i % 10 == 0 and i / 10 < len(output_writers):
            index = int(i // 10)
            if epoch == 0:
                output_writers[index].add_image('val flow Input',
                                                tensor2array(tgt_img[0]), 0)
                flow_to_show = flow_gt[0][:2, :, :].cpu()
                output_writers[index].add_image(
                    'val target Flow',
                    flow_to_image(tensor2array(flow_to_show)), epoch)

            output_writers[index].add_image(
                'val Total Flow Output',
                flow_to_image(tensor2array(total_flow.data[0].cpu())), epoch)
            output_writers[index].add_image(
                'val Rigid Flow Output',
                flow_to_image(tensor2array(flow_fwd_rigid.data[0].cpu())),
                epoch)
            output_writers[index].add_image(
                'val Non-rigid Flow Output',
                flow_to_image(tensor2array(flow_fwd_non_rigid.data[0].cpu())),
                epoch)
            output_writers[index].add_image(
                'val Out of Bound (Rigid)',
                tensor2array(oob_rigid.type(torch.FloatTensor).data[0].cpu(),
                             max_value=1,
                             colormap='bone'), epoch)
            output_writers[index].add_scalar(
                'val Mean oob (Rigid)',
                oob_rigid.type(torch.FloatTensor).sum(), epoch)
            output_writers[index].add_image(
                'val Out of Bound (Non-Rigid)',
                tensor2array(oob_non_rigid.type(
                    torch.FloatTensor).data[0].cpu(),
                             max_value=1,
                             colormap='bone'), epoch)
            output_writers[index].add_scalar(
                'val Mean oob (Non-Rigid)',
                oob_non_rigid.type(torch.FloatTensor).sum(), epoch)
            output_writers[index].add_image(
                'val Cam Flow Errors',
                tensor2array(flow_diff(flow_gt_var, flow_cam).data[0].cpu()),
                epoch)
            output_writers[index].add_image(
                'val Rigidity Mask',
                tensor2array(rigidity_mask.data[0].cpu(),
                             max_value=1,
                             colormap='bone'), epoch)
            output_writers[index].add_image(
                'val Rigidity Mask Census',
                tensor2array(rigidity_mask_census.data[0].cpu(),
                             max_value=1,
                             colormap='bone'), epoch)

            for j, ref in enumerate(ref_imgs):
                ref_warped = inverse_warp(ref[:1],
                                          depth[:1, 0],
                                          pose[:1, j],
                                          intrinsics_var[:1],
                                          intrinsics_inv_var[:1],
                                          rotation_mode=args.rotation_mode,
                                          padding_mode=args.padding_mode)[0]

                output_writers[index].add_image(
                    'val Warped Outputs {}'.format(j),
                    tensor2array(ref_warped.data.cpu()), epoch)
                output_writers[index].add_image(
                    'val Diff Outputs {}'.format(j),
                    tensor2array(0.5 *
                                 (tgt_img[0] - ref_warped).abs().data.cpu()),
                    epoch)
                if explainability_mask is not None:
                    output_writers[index].add_image(
                        'val Exp mask Outputs {}'.format(j),
                        tensor2array(explainability_mask[0, j].data.cpu(),
                                     max_value=1,
                                     colormap='bone'), epoch)

            if args.DEBUG:
                # Check if pose2flow is consistant with inverse warp
                ref_warped_from_depth = inverse_warp(
                    ref_imgs[2][:1],
                    depth[:1, 0],
                    pose[:1, 2],
                    intrinsics_var[:1],
                    intrinsics_inv_var[:1],
                    rotation_mode=args.rotation_mode,
                    padding_mode=args.padding_mode)[0]
                ref_warped_from_cam_flow = flow_warp(ref_imgs[2][:1],
                                                     flow_cam)[0]
                print(
                    "DEBUG_INFO: Inverse_warp vs pose2flow",
                    torch.mean(
                        torch.abs(ref_warped_from_depth -
                                  ref_warped_from_cam_flow)).item())
                output_writers[index].add_image(
                    'val Warped Outputs from Cam Flow',
                    tensor2array(ref_warped_from_cam_flow.data.cpu()), epoch)
                output_writers[index].add_image(
                    'val Warped Outputs from inverse warp',
                    tensor2array(ref_warped_from_depth.data.cpu()), epoch)

        if log_outputs and i < len(val_loader) - 1:
            step = args.sequence_length - 1
            poses[i * step:(i + 1) * step] = pose.data.cpu().view(-1,
                                                                  6).numpy()

        if np.isnan(flow_gt.sum().item()) or np.isnan(
                total_flow.data.sum().item()):
            print('NaN encountered')
        #
        _epe_errors = compute_all_epes(
            flow_gt_var, flow_cam,
            flow_fwd, rigidity_mask_combined) + compute_all_epes(
                flow_gt_var, flow_cam, flow_fwd, (1 - obj_map_gt_var_expanded))
        errors.update(_epe_errors)

        if args.DEBUG:
            print("DEBUG_INFO: EPE errors: ", _epe_errors)
        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

    if log_outputs:
        output_writers[0].add_histogram('val poses_tx', poses[:, 0], epoch)
        output_writers[0].add_histogram('val poses_ty', poses[:, 1], epoch)
        output_writers[0].add_histogram('val poses_tz', poses[:, 2], epoch)
        if args.rotation_mode == 'euler':
            rot_coeffs = ['rx', 'ry', 'rz']
        elif args.rotation_mode == 'quat':
            rot_coeffs = ['qx', 'qy', 'qz']
        output_writers[0].add_histogram('val poses_{}'.format(rot_coeffs[0]),
                                        poses[:, 3], epoch)
        output_writers[0].add_histogram('val poses_{}'.format(rot_coeffs[1]),
                                        poses[:, 4], epoch)
        output_writers[0].add_histogram('val poses_{}'.format(rot_coeffs[2]),
                                        poses[:, 5], epoch)

    if args.DEBUG:
        print("DEBUG_INFO =================>")
        print("DEBUG_INFO: Average EPE : ", errors.avg)
        print("DEBUG_INFO =================>")
        print("DEBUG_INFO =================>")
        print("DEBUG_INFO =================>")

    return errors.avg, error_names