コード例 #1
0
    def __init__(self):
        encoder_path = './expr/attentioncnn/encoder_600.pth'
        decoder_path = './expr/attentioncnn/decoder_600.pth'
        self.alphabet = '0123456789'
        self.max_length = 7  # 最长字符串的长度
        self.EOS_TOKEN = 1
        self.use_gpu = True
        self.max_width = 220
        self.converter = utils.strLabelConverterForAttention(self.alphabet)
        self.transform = transforms.ToTensor()

        nclass = len(self.alphabet) + 3
        encoder = crnn.CNN(32, 1, 256)  # 编码器
        decoder = crnn.decoder(256,
                               nclass)  # seq to seq的解码器, nclass在decoder中还加了2

        if encoder_path and decoder_path:
            print('loading pretrained models ......')
            encoder.load_state_dict(torch.load(encoder_path))
            decoder.load_state_dict(torch.load(decoder_path))
        if torch.cuda.is_available() and self.use_gpu:
            encoder = encoder.cuda()
            decoder = decoder.cuda()
        self.encoder = encoder.eval()
        self.decoder = decoder.eval()
コード例 #2
0
                                           shuffle=False,
                                           sampler=sampler,
                                           num_workers=int(opt.workers),
                                           collate_fn=dataset.alignCollate(
                                               imgH=opt.imgH,
                                               imgW=opt.imgW,
                                               keep_ratio=opt.keep_ratio))

test_dataset = dataset.listDataset(list_file=opt.vallist,
                                   transform=dataset.resizeNormalize(
                                       (opt.imgW, opt.imgH)))

nclass = len(alphabet) + 3  # decoder的时候,需要的类别数,3 for SOS,EOS和blank
nc = 1

converter = utils.strLabelConverterForAttention(alphabet)
# criterion = torch.nn.CrossEntropyLoss()
criterion = torch.nn.NLLLoss()


def weights_init(model):
    # Official init from torch repo.
    for m in model.modules():
        if isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight)
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.constant_(m.weight, 1)
            nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.Linear):
            nn.init.constant_(m.bias, 0)
コード例 #3
0
ファイル: attCTC_1.py プロジェクト: wenyafei4/crnn-study
else:
    sampler = None
train_loader = torch.utils.data.DataLoader(
    train_dataset, batch_size=opt.batchSize,
    shuffle=False, sampler=sampler,
    num_workers=int(opt.workers),
    collate_fn=dataset.alignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio=opt.keep_ratio))
print (len(train_loader))
#test_dataset = dataset.listDataset(list_file =opt.vallist, transform=dataset.resizeNormalize((100, 32)))
test_dataset = dataset.listDataset(list_file =opt.vallist)

alphabet = str1.decode('utf-8')
nclass = len(alphabet)
nc = 1

converterAttention = utils.strLabelConverterForAttention(alphabet, opt.sep)
converterCTC = utils.strLabelConverterForCTC(alphabet, opt.sep)
criterionAttention = torch.nn.CrossEntropyLoss()
criterionCTC = CTCLoss()


# custom weights initialization called on crnn
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        m.weight.data.normal_(0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)