コード例 #1
0
def gradient_it(m, eps):
    cnt = 0

    (A, B) = ut.split_at(m)
    x0 = [0] * len(B)
    r0 = ut.minus(B, ut.subst(A, x0))
    p0 = r0
    z0 = r0
    s0 = r0

    for i in range(0, 2 * len(B)):
        sub = ut.subst(A, z0)
        prev_p = p0
        prev_r = r0
        At = ut.transpose_matrix(A)
        # print(At)

        a = ut.scalar_product(p0, r0) / ut.scalar_product(s0, sub)
        x0 = ut.plus(x0, ut.mul(a, z0))
        r0 = ut.minus(r0, ut.mul(a, sub))
        p0 = ut.minus(p0, ut.mul(a, ut.subst(At, s0)))
        b = ut.scalar_product(p0, r0) / ut.scalar_product(prev_p, prev_r)
        z0 = ut.plus(r0, ut.mul(b, z0))
        s0 = ut.plus(p0, ut.mul(b, s0))

        if abs(ut.norm(r0) / ut.norm(B)) < eps:
            break
        cnt += 1

    return (x0, cnt)
コード例 #2
0
def estremo_gibbs(iterations=50000,
                  verbose=False,
                  every=1000,
                  sigma=1,
                  mu=-10,
                  Ne=5):
    nu = Ne - 1
    L = 10
    N = 20
    code, motif = (sample_code(L=10,
                               sigma=1), random_motif(length=L, num_sites=N))

    def log_f((code, motif)):
        eps = map(lambda x: -log(x), pw_prob_sites(motif, code))
        return sum(nu * log(1 / (1 + exp(ep - mu))) for ep in eps)

    chain = [(code, motif[:])]
    print log_f((code, motif))
    for iteration in trange(iterations):
        for i in range(N):
            site = motif[i]
            for j in range(L):
                b = site[j]
                log_ps = []
                bps = [bp for bp in "ACGT" if not bp == b]
                for bp in bps:
                    site_p = subst(site, bp, j)
                    log_ps.append(log_f((code, [site_p])))
                log_ps = [p - min(log_ps) for p in log_ps]
                bp = inverse_cdf_sample(bps,
                                        map(exp, log_ps),
                                        normalized=False)
                motif[i] = subst(site, bp, j)
        for k in range(L - 1):
            for b1 in "ACGT":
                for b2 in "ACGT":
                    dws = [random.gauss(0, 0.1) for _ in range(10)]
                    code_ps = [[d.copy() for d in code] for _ in range(10)]
                    for code_p, dw in zip(code_ps, dws):
                        code_p[k][b1, b2] += dw
                    log_ps = [log_f((code_p, motif)) for code_p in code_ps]
                    log_ps = [p - min(log_ps) for p in log_ps]
                    code_p = inverse_cdf_sample(code_ps,
                                                map(exp, log_ps),
                                                normalized=False)
                    code = code_p
        print log_f((code, motif))
        chain.append((code, motif[:]))
    return chain

    x0 = (sample_code(L=10, sigma=1), random_motif(length=10, num_sites=20))
    chain = mh(log_f,
               prop,
               x0,
               use_log=True,
               iterations=iterations,
               verbose=verbose,
               every=every)
    return chain
コード例 #3
0
def jacobi(m, eps):
    (A, f) = split_at(m)
    (B, c) = to_iter(A, f)
    prev = c
    x = plus(subst(B, prev), c)
    cnt = 1
    n = norma(B)
    if (n >= 1):
        print("norma > 1, Jacobi error")
        return ([[]], 0)
    e1 = (1 - n) / n * eps
    while (myNorm(minus(x, prev)) > e1):
        cnt += 1
        prev = x
        x = plus(subst(B, prev), c)
    return (x, cnt)
コード例 #4
0
def maxent_site_cftp(N, beta):
    top_site = ["A"]*N
    bottom_site = ["T"]*N
    def mutate_site(site, (ri, rdir)):
        i = "ACGT".index(site[ri])
        ip = max(0, min(3, i + rdir))
        bp = "ACGT"[ip]
        return subst(site,[bp],ri)
コード例 #5
0
def maxent_site_cftp(N, beta):
    top_site = ["A"] * N
    bottom_site = ["T"] * N

    def mutate_site(site, (ri, rdir)):
        i = "ACGT".index(site[ri])
        ip = max(0, min(3, i + rdir))
        bp = "ACGT"[ip]
        return subst(site, [bp], ri)
コード例 #6
0
def sample_site_cftp_dep(matrix, mu, Ne):
    L = len(matrix)
    def log_phat(s):
        ep = score_seq(matrix,s)
        nu = Ne - 1
        return -nu*log(1 + exp(ep - mu))
    first_site = "A"*L
    last_site = "T"*L
    best_site = "".join(["ACGT"[argmin(row)] for row in matrix])
    worst_site = "".join(["ACGT"[argmax(row)] for row in matrix])
    trajs = [[best_site],[random_site(L)],[random_site(L)],[random_site(L)], [worst_site]]
    def mutate_site(site,(ri,rb)):
        return subst(site,"ACGT"[rb],ri)
コード例 #7
0
def mutate_sites_spec(sites, site_mu):
    n = len(sites)
    L = len(sites[0])
    muts = np.random.binomial(n * L, site_mu)
    if muts == 0:
        return sites
    # else...
    new_sites = sites[:]
    for mut in range(muts):
        i = random.randrange(n)
        j = random.randrange(L)
        site = new_sites[i]
        b = site[j]
        new_b = random.choice([c for c in "ACGT" if not c == b])
        new_sites[i] = subst(site, new_b, j)
    return new_sites
コード例 #8
0
def mutate_sites_spec(sites,site_mu):
    n = len(sites)
    L = len(sites[0])
    muts = np.random.binomial(n*L,site_mu)
    if muts == 0:
        return sites
    # else...
    new_sites = sites[:]
    for mut in range(muts):
        i = random.randrange(n)
        j = random.randrange(L)
        site = new_sites[i]
        b = site[j]
        new_b = random.choice([c for c in "ACGT" if not c == b])
        new_sites[i] = subst(site,new_b,j)
    return new_sites
コード例 #9
0
def mutate_motif_k_times(motif, k):
    motif_ = motif[:]
    n = len(motif)
    L = len(motif[0])
    N = n * L
    rs = range(N)
    choices = []
    for _ in range(k):
        r = random.choice(rs)
        choices.append(r)
        rs.remove(r)
    for r in choices:
        i = r / L
        j = r % L
        b = motif[i][j]
        new_b = random.choice([c for c in "ACGT" if not c == b])
        motif_[i] = subst(motif_[i], new_b, j)
    return motif_
def mutate_motif_k_times_ref(motif, k):
    motif_ = motif[:]
    n = len(motif)
    L = len(motif[0])
    N = n * L
    k_so_far = 0
    choices = []
    while k_so_far < k:
        i = random.randrange(n)
        j = random.randrange(L)
        if (i, j) in choices:
            continue
        else:
            choices.append((i, j))
            k_so_far += 1
            b = motif[i][j]
            new_b = random.choice([c for c in "ACGT" if not c == b])
            motif_[i] = subst(motif_[i], new_b, j)
    return motif_
コード例 #11
0
def sample_site_cftp(matrix, mu, Ne):
    L = len(matrix)
    f = seq_scorer(matrix)
    def log_phat(s):
        ep = f(s)
        nu = Ne - 1
        return -nu*log(1 + exp(ep - mu))
    first_site = "A"*L
    last_site = "T"*L
    best_site = "".join(["ACGT"[argmin(row)] for row in matrix])
    worst_site = "".join(["ACGT"[argmax(row)] for row in matrix])
    #middle_sites  = [[random_site(L)] for i in range(10)]
    #trajs = [[best_site]] + middle_sites + [[worst_site]]
    trajs = [[best_site],[worst_site]]
    ords = [rslice("ACGT",sorted_indices(row)) for row in matrix]
    def mutate_site(site,(ri,direction)):
        b = (site[ri])
        idx = ords[ri].index(b)
        idxp = min(max(idx + direction,0),3)
        bp = ords[ri][idxp]
        return subst(site,bp,ri)
コード例 #12
0
    def do_query(self, q):
        """
        Query solution.

        Consider the following example;

          > f(1) := 1.
          > f(2) := 4.

        There a few versions of query:

         - `vquery` shows variable bindings

            > vquery f(X)
            1 where {X=1}
            4 where {X=1}

         - `query` shows variable bindings applied to query

            > query f(X)
            f(1) = 1.
            f(2) = 4.

         - `trace` is an introspection tool for visualizing the derivation of an
           item and its value. Type `help trace` for more information.

        """
        results = self._query(q)
        if results is None:
            return
        if len(results) == 0:
            print 'No results.'
            return
        print
        for term, result in sorted(
            (subst(q, result), result) for result in results):
            print '%s = %s.' % (term, _repr(todyna(result['$val'])))
        print
コード例 #13
0
ファイル: repl.py プロジェクト: nwf/dyna
    def do_query(self, q):
        """
        Query solution.

        Consider the following example;

          > f(1) := 1.
          > f(2) := 4.

        There a few versions of query:

         - `vquery` shows variable bindings

            > vquery f(X)
            1 where {X=1}
            4 where {X=1}

         - `query` shows variable bindings applied to query

            > query f(X)
            f(1) = 1.
            f(2) = 4.

         - `trace` is an introspection tool for visualizing the derivation of an
           item and its value. Type `help trace` for more information.

        """
        results = self._query(q)
        if results is None:
            return
        if len(results) == 0:
            print "No results."
            return
        print
        for term, result in sorted((subst(q, result), result) for result in results):
            print "%s = %s." % (term, _repr(todyna(result["$val"])))
        print