コード例 #1
0
        def step(self, dt, annotate=None):

            to_annotate = utils.to_annotate(annotate)

            if to_annotate:
                scheme = self.scheme()
                var = scheme.solution()
                fn_space = var.function_space()

                current_var = adjglobals.adj_variables[var]
                if not adjglobals.adjointer.variable_known(current_var):
                    solving.register_initial_conditions([(var, current_var)], linear=True)

                identity_block = utils.get_identity_block(fn_space)
                frozen_expressions = expressions.freeze_dict()
                frozen_constants = constant.freeze_dict()
                rhs = PointIntegralRHS(self, dt, current_var, frozen_expressions, frozen_constants)
                next_var = adjglobals.adj_variables.next(var)

                eqn = libadjoint.Equation(next_var, blocks=[identity_block], targets=[next_var], rhs=rhs)
                cs = adjglobals.adjointer.register_equation(eqn)

            super(PointIntegralSolver, self).step(dt)

            if to_annotate:
                curtime = float(scheme.t())
                scheme.t().assign(curtime)  # so that d-a sees the time update, which is implict in step

                solving.do_checkpoint(cs, next_var, rhs)

                if dolfin.parameters["adjoint"]["record_all"]:
                    adjglobals.adjointer.record_variable(next_var, libadjoint.MemoryStorage(adjlinalg.Vector(var)))
コード例 #2
0
ファイル: function.py プロジェクト: cpknowles/dolfin-adjoint
    def __init__(self, *args, **kwargs):

        annotate = kwargs.pop("annotate", None)
        to_annotate = utils.to_annotate(annotate)

        if "name" in kwargs:
            self.adj_name = kwargs["name"]

            #if self.adj_name in adjglobals.function_names and to_annotate:
            #  backend.info_red("Warning: got duplicate function name %s" % self.adj_name)

            adjglobals.function_names.add(self.adj_name)
            del kwargs["name"]

        backend.Function.__init__(self, *args, **kwargs)

        if hasattr(self, 'adj_name'):
            if backend.__name__ == "dolfin":
                self.rename(self.adj_name, "a Function from dolfin-adjoint")
            else:
                self.name = self.__str__

        if to_annotate:
            if not isinstance(args[0], compatibility.function_space_type):
                if isinstance(args[0], backend.Function):
                    known = adjglobals.adjointer.variable_known(adjglobals.adj_variables[args[0]])
                else:
                    known = True

                if known or (annotate is True):
                    assignment.register_assign(self, args[0])
                else:
                    adjglobals.adj_variables.forget(args[0])
コード例 #3
0
def project_firedrake(v, V, **kwargs):

    annotate = kwargs.pop("annotate", None)

    to_annotate = utils.to_annotate(annotate)

    if isinstance(v, backend.Expression) and (annotate is not True):
        to_annotate = False

    if isinstance(v, backend.Constant) and (annotate is not True):
        to_annotate = False

    if isinstance(V, backend.functionspaceimpl.WithGeometry):
        result = utils.function_to_da_function(backend.Function(V, name=None))
    elif isinstance(V, backend.function.Function):
        result = utils.function_to_da_function(V)
    else:
        raise ValueError("Can't project into a '%r'" % V)

    name = kwargs.pop("name", None)
    if name is not None:
        result.adj_name = name
        result.rename(name, "a Function from dolfin-adjoint")
    with misc.annotations(to_annotate):
        result = backend.project(v, result, **kwargs)

    return result
コード例 #4
0
    def assign(self, receiving, giving, annotate=None):

      out = backend.FunctionAssigner.assign(self, receiving, giving)
      to_annotate = utils.to_annotate(annotate)

      if to_annotate:
        # Receiving is always a single Function, or a single Function.sub(foo).sub(bar)

        # If the user passes in v.sub(0) to this function, we need to get a handle on v;
        # fetch that now
        receiving_super = get_super_function(receiving)
        receiving_fnspace = receiving_super.function_space()
        receiving_identity = utils.get_identity_block(receiving_fnspace)
        receiving_idx = get_super_idx(receiving)

        rhs = FunctionAssignerRHS(self, self.adj_function_assigner, receiving_super, receiving_idx, giving)
        receiving_dep = adjglobals.adj_variables.next(receiving_super)

        solving.register_initial_conditions(zip(rhs.coefficients(),rhs.dependencies()), linear=True)
        if backend.parameters["adjoint"]["record_all"]:
          adjglobals.adjointer.record_variable(receiving_dep, libadjoint.MemoryStorage(adjlinalg.Vector(receiving_super)))

        eq = libadjoint.Equation(receiving_dep, blocks=[receiving_identity], targets=[receiving_dep], rhs=rhs)
        cs = adjglobals.adjointer.register_equation(eq)

        solving.do_checkpoint(cs, receiving_dep, rhs)

      return out
コード例 #5
0
    def solve(self, *args, **kwargs):
        '''To disable the annotation, just pass :py:data:`annotate=False` to this routine, and it acts exactly like the
        Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
        for the purposes of the adjoint computation (such as projecting fields to other function spaces
        for the purposes of visualisation).'''

        to_annotate = utils.to_annotate(kwargs.pop("annotate", None))

        if to_annotate:
            factory = args[0]
            vec = args[1]
            b = dolfin.as_backend_type(vec).__class__()

            factory.F(b=b, x=vec)

            F = b.form
            bcs = b.bcs

            u = vec.function
            var = adjglobals.adj_variables[u]

            solving.annotate(F == 0, u, bcs, solver_parameters={"newton_solver": self.parameters.to_dict()})

        newargs = [self] + list(args)
        out = dolfin.NewtonSolver.solve(*newargs, **kwargs)

        if to_annotate and dolfin.parameters["adjoint"]["record_all"]:
            adjglobals.adjointer.record_variable(adjglobals.adj_variables[u], libadjoint.MemoryStorage(adjlinalg.Vector(u)))

        return out
コード例 #6
0
    def solve(self, annotate=None):
        """To disable the annotation, just pass :py:data:`annotate=False` to this routine, and it acts exactly like the
        Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
        for the purposes of the adjoint computation (such as projecting fields to other function spaces
        for the purposes of visualisation)."""

        annotate = utils.to_annotate(annotate)

        if annotate:
            problem = self.problem
            solving.annotate(
                problem.F == 0,
                problem.u,
                problem.bcs,
                J=problem.J,
                solver_parameters=compatibility.to_dict(self.parameters),
            )

        out = backend.NonlinearVariationalSolver.solve(self)

        if annotate and backend.parameters["adjoint"]["record_all"]:
            adjglobals.adjointer.record_variable(
                adjglobals.adj_variables[self.problem.u], libadjoint.MemoryStorage(adjlinalg.Vector(self.problem.u))
            )

        return out
コード例 #7
0
def interpolate(v, V, annotate=None, name=None):
    '''The interpolate call changes Function data, and so it too must be annotated so that the
    adjoint and tangent linear models may be constructed automatically by libadjoint.

    To disable the annotation of this function, just pass :py:data:`annotate=False`. This is useful in
    cases where the interpolation is known to be irrelevant or diagnostic for the purposes of the adjoint
    computation (such as interpolating fields to other function spaces for the purposes of
    visualisation).'''

    out = backend.interpolate(v, V)
    if name is not None:
        out.adj_name = name

    to_annotate = utils.to_annotate(annotate)

    if isinstance(v, backend.Function) and to_annotate:
        rhsdep = adjglobals.adj_variables[v]
        if adjglobals.adjointer.variable_known(rhsdep):
            rhs = InterpolateRHS(v, V)
            identity_block = utils.get_identity_block(V)

            solving.register_initial_conditions(zip(rhs.coefficients(),rhs.dependencies()), linear=True)

            dep = adjglobals.adj_variables.next(out)

            if backend.parameters["adjoint"]["record_all"]:
                adjglobals.adjointer.record_variable(dep, libadjoint.MemoryStorage(adjlinalg.Vector(out)))

            initial_eq = libadjoint.Equation(dep, blocks=[identity_block], targets=[dep], rhs=rhs)
            cs = adjglobals.adjointer.register_equation(initial_eq)

            solving.do_checkpoint(cs, dep, rhs)

    return out
コード例 #8
0
    def project(self, other, annotate=None, *args, **kwargs):
        '''To disable the annotation, just pass :py:data:`annotate=False` to this routine, and it acts exactly like the
        Firedrake project call.'''

        to_annotate = utils.to_annotate(annotate)

        if not to_annotate:
            flag = misc.pause_annotation()

        res = firedrake_project(self, other, *args, **kwargs)

        if not to_annotate:
            misc.continue_annotation(flag)

        return res
コード例 #9
0
def project_dolfin(v, V=None, bcs=None, mesh=None, solver_type="cg", preconditioner_type="default", form_compiler_parameters=None, annotate=None, name=None):
    '''The project call performs an equation solve, and so it too must be annotated so that the
    adjoint and tangent linear models may be constructed automatically by libadjoint.

    To disable the annotation of this function, just pass :py:data:`annotate=False`. This is useful in
    cases where the solve is known to be irrelevant or diagnostic for the purposes of the adjoint
    computation (such as projecting fields to other function spaces for the purposes of
    visualisation).'''

    to_annotate = utils.to_annotate(annotate)

    if isinstance(v, backend.Expression) and (annotate is not True):
        to_annotate = False

    if isinstance(v, backend.Constant) and (annotate is not True):
        to_annotate = False

    out = backend.project(v=v, V=V, bcs=bcs, mesh=mesh, solver_type=solver_type, preconditioner_type=preconditioner_type, form_compiler_parameters=form_compiler_parameters)
    out = utils.function_to_da_function(out)

    if name is not None:
        out.adj_name = name
        out.rename(name, "a Function from dolfin-adjoint")

    if to_annotate:
        # reproduce the logic from project. This probably isn't future-safe, but anyway

        if V is None:
            V = backend.fem.projection._extract_function_space(v, mesh)
        if mesh is None:
            mesh = V.mesh()

        # Define variational problem for projection
        w = backend.TestFunction(V)
        Pv = backend.TrialFunction(V)
        a = backend.inner(w, Pv)*backend.dx(domain=mesh)
        L = backend.inner(w, v)*backend.dx(domain=mesh)

        solving.annotate(a == L, out, bcs, solver_parameters={"linear_solver": solver_type, "preconditioner": preconditioner_type, "symmetric": True})

        if backend.parameters["adjoint"]["record_all"]:
            adjglobals.adjointer.record_variable(adjglobals.adj_variables[out], libadjoint.MemoryStorage(adjlinalg.Vector(out)))

    return out
コード例 #10
0
ファイル: solving.py プロジェクト: live-clones/dolfin-adjoint
def solve(*args, **kwargs):
    """This solve routine wraps the real Dolfin solve call. Its purpose is to annotate the model,
    recording what solves occur and what forms are involved, so that the adjoint and tangent linear models may be
    constructed automatically by libadjoint.

    To disable the annotation, just pass :py:data:`annotate=False` to this routine, and it acts exactly like the
    Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
    for the purposes of the adjoint computation (such as projecting fields to other function spaces
    for the purposes of visualisation)."""

    # First, decide if we should annotate or not.
    to_annotate = utils.to_annotate(kwargs.pop("annotate", None))
    if to_annotate:
        linear = annotate(*args, **kwargs)

    # Avoid recursive annotation
    flag = misc.pause_annotation()
    try:
        ret = backend.solve(*args, **kwargs)
    except:
        raise
    finally:
        misc.continue_annotation(flag)

    if to_annotate:
        # Finally, if we want to record all of the solutions of the real forward model
        # (for comparison with a libadjoint replay later),
        # then we should record the value of the variable we just solved for.
        if backend.parameters["adjoint"]["record_all"]:
            if isinstance(args[0], ufl.classes.Equation):
                unpacked_args = compatibility._extract_args(*args, **kwargs)
                u = unpacked_args[1]
                adjglobals.adjointer.record_variable(
                    adjglobals.adj_variables[u], libadjoint.MemoryStorage(adjlinalg.Vector(u))
                )
            elif isinstance(args[0], compatibility.matrix_types()):
                u = args[1].function
                adjglobals.adjointer.record_variable(
                    adjglobals.adj_variables[u], libadjoint.MemoryStorage(adjlinalg.Vector(u))
                )
            else:
                raise libadjoint.exceptions.LibadjointErrorInvalidInputs("Don't know how to record, sorry")

    return ret
コード例 #11
0
    def copy(self, *args, **kwargs):

        name = kwargs.pop("name", None)
        annotate = kwargs.pop("annotate", None)
        to_annotate = utils.to_annotate(annotate)

        with misc.annotations(False):
            copy = backend.Function.copy(self, *args, **kwargs)
            copy = utils.function_to_da_function(copy)

        if name is not None:
            copy.adj_name = name
            copy.rename(name, "a Function from dolfin-adjoint")
            adjglobals.function_names.add(name)

        if to_annotate:
            assignment.register_assign(copy, self)

        return copy
コード例 #12
0
ファイル: assembly.py プロジェクト: ellipsis14/dolfin-adjoint
def assemble(*args, **kwargs):
    """When a form is assembled, the information about its nonlinear dependencies is lost,
  and it is no longer easy to manipulate. Therefore, dolfin_adjoint overloads the :py:func:`dolfin.assemble`
  function to *attach the form to the assembled object*. This lets the automatic annotation work,
  even when the user calls the lower-level :py:data:`solve(A, x, b)`.
  """
    form = args[0]
    caching.assembled_fwd_forms.add(form)
    cache = kwargs.pop("cache", False)

    to_annotate = utils.to_annotate(kwargs.pop("annotate", None))

    output = backend_assemble(*args, **kwargs)
    if not isinstance(output, float) and to_annotate:
        output.form = form
        output.assemble_system = False

    if cache:
        caching.assembled_adj_forms[form] = output

    return output
コード例 #13
0
ファイル: assembly.py プロジェクト: ellipsis14/dolfin-adjoint
def assemble_system(*args, **kwargs):
    """When a form is assembled, the information about its nonlinear dependencies is lost,
  and it is no longer easy to manipulate. Therefore, dolfin_adjoint overloads the :py:func:`dolfin.assemble_system`
  function to *attach the form to the assembled object*. This lets the automatic annotation work,
  even when the user calls the lower-level :py:data:`solve(A, x, b)`.
  """
    lhs = args[0]
    rhs = args[1]
    caching.assembled_fwd_forms.add(lhs)
    caching.assembled_fwd_forms.add(rhs)

    cache = kwargs.pop("cache", False)

    if "bcs" in kwargs:
        bcs = kwargs["bcs"]
    elif len(args) > 2:
        bcs = args[2]
    else:
        bcs = []

    if not isinstance(bcs, list):
        bcs = [bcs]

    (lhs_out, rhs_out) = backend.assemble_system(*args, **kwargs)

    to_annotate = utils.to_annotate(kwargs.pop("annotate", None))
    if to_annotate:
        lhs_out.form = lhs
        lhs_out.bcs = bcs
        lhs_out.assemble_system = True
        rhs_out.form = rhs
        rhs_out.bcs = bcs
        rhs_out.assemble_system = True

    if cache:
        caching.assembled_adj_forms[lhs] = lhs_out
        caching.assembled_adj_forms[rhs] = rhs_out

    return (lhs_out, rhs_out)
コード例 #14
0
    def solve_local(self, x_vec, b_vec, b_dofmap, **kwargs):
        # Figure out whether to annotate or not
        to_annotate = utils.to_annotate(kwargs.pop("annotate", None))
        x = x_vec.function

        if to_annotate:
            L = b_vec.form

            # Set Matrix class for solving the adjoint systems
            solving.annotate(self.a == L, x, \
                            solver_parameters={"solver_type": self.solver_type, "factorize" : self.adjoint_factorize}, \
                            matrix_class=LocalSolverMatrix)

        # Use standard local solver
        out = dolfin.LocalSolver.solve_local(self, x_vec, b_vec, b_dofmap)

        if to_annotate:
            # checkpointing
            if dolfin.parameters["adjoint"]["record_all"]:
                adjglobals.adjointer.record_variable(adjglobals.adj_variables[x],
                           libadjoint.MemoryStorage(adjlinalg.Vector(x)))

        return out
コード例 #15
0
def project_firedrake(*args, **kwargs):

  try:
    annotate = kwargs["annotate"]
    kwargs.pop("annotate")
  except KeyError:
    annotate = None

  to_annotate = utils.to_annotate(annotate)

  if isinstance(args[0], backend.Expression) and (annotate is not True):
    to_annotate = False

  if isinstance(args[0], backend.Constant) and (annotate is not True):
    to_annotate = False

  if to_annotate:
    result = backend.project(*args, **kwargs)
  else:
    flag = misc.pause_annotation()
    result = backend.project(*args, **kwargs)
    misc.continue_annotation(flag)

  return result
コード例 #16
0
    def solve(self, *args, **kwargs):
        '''To disable the annotation, just pass :py:data:`annotate=False` to this routine, and it acts exactly like the
        Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
        for the purposes of the adjoint computation (such as projecting fields to other function spaces
        for the purposes of visualisation).'''

        to_annotate = utils.to_annotate(kwargs.pop("annotate", None))

        if to_annotate:
            if len(args) == 3:
                A = args[0]
                x = args[1]
                b = args[2]
            elif len(args) == 2:
                A = self.operators[0]
                x = args[0]
                b = args[1]

            bcs = []
            if hasattr(A, 'bcs'):
                bcs += A.bcs
            if hasattr(b, 'bcs'):
                bcs += b.bcs
            bcs = misc.uniq(bcs)

            assemble_system = A.assemble_system

            A = A.form
            u = x.function
            b = b.form

            if self.operators[1] is not None:
                P = self.operators[1].form
            else:
                P = None

            solver_parameters = self.solver_parameters
            parameters = self.parameters.to_dict()
            fn_space = u.function_space()
            has_preconditioner = P is not None
            nsp = self.nsp
            tnsp = self.tnsp

            if nsp is not None:
                msg = """
                The transpose nullspace is not set.

                The nullspace of the PETScKrylovSolver is set. In this case,
                the transpose nullspace must also be set, use:

                  solver.set_transpose_nullspace(nullspace)
                """
                assert tnsp is not None, msg

            if self.__global_list_idx__ is None:
                self.__global_list_idx__ = len(petsc_krylov_solvers)
                petsc_krylov_solvers.append(self)
                adj_petsc_krylov_solvers.append(None)
            idx = self.__global_list_idx__

            class PETScKrylovSolverMatrix(adjlinalg.Matrix):
                def __init__(selfmat, *args, **kwargs):
                    if 'initial_guess' in kwargs:
                        selfmat.initial_guess = kwargs['initial_guess']
                        del kwargs['initial_guess']
                    else:
                        selfmat.initial_guess = None

                    replace_map = kwargs['replace_map']
                    del kwargs['replace_map']

                    adjlinalg.Matrix.__init__(selfmat, *args, **kwargs)

                    selfmat.adjoint = kwargs['adjoint']
                    if P is None:
                        selfmat.operators = (dolfin.replace(A, replace_map), None)
                    else:
                        selfmat.operators = (dolfin.replace(A, replace_map), dolfin.replace(P, replace_map))

                def axpy(selfmat, alpha, x):
                    raise libadjoint.exceptions.LibadjointErrorNotImplemented("Shouldn't ever get here")

                def solve(selfmat, var, b):
                    if selfmat.adjoint:
                        operators = transpose_operators(selfmat.operators)
                    else:
                        operators = selfmat.operators

                    # Fetch/construct the solver
                    if var.type in ['ADJ_FORWARD', 'ADJ_TLM']:
                        solver = petsc_krylov_solvers[idx]
                        need_to_set_operator = self._need_to_reset_operator
                    else:
                        if adj_petsc_krylov_solvers[idx] is None:
                            need_to_set_operator = True
                            adj_petsc_krylov_solvers[idx] = PETScKrylovSolver(*solver_parameters)
                            adj_ksp = adj_petsc_krylov_solvers[idx].ksp()
                            fwd_ksp = petsc_krylov_solvers[idx].ksp()
                            adj_ksp.setOptionsPrefix(fwd_ksp.getOptionsPrefix())
                            adj_ksp.setType(fwd_ksp.getType())
                            adj_ksp.pc.setType(fwd_ksp.pc.getType())
                            adj_ksp.setFromOptions()
                        else:
                            need_to_set_operator = self._need_to_reset_operator
                        solver = adj_petsc_krylov_solvers[idx]
                        # FIXME: work around DOLFIN bug #583
                        try:
                            solver.parameters.convergence_norm_type
                        except:
                            solver.parameters.convergence_norm_type = "preconditioned"
                        # end FIXME
                    solver.parameters.update(parameters)
                    self._need_to_reset_operator = False

                    if selfmat.adjoint:
                        (nsp_, tnsp_) = (tnsp, nsp)
                    else:
                        (nsp_, tnsp_) = (nsp, tnsp)

                    x = dolfin.Function(fn_space)
                    if selfmat.initial_guess is not None and var.type == 'ADJ_FORWARD':
                        x.vector()[:] = selfmat.initial_guess.vector()

                    if b.data is None:
                        dolfin.info_red("Warning: got zero RHS for the solve associated with variable %s" % var)
                        return adjlinalg.Vector(x)

                    if var.type in ['ADJ_TLM', 'ADJ_ADJOINT']:
                        selfmat.bcs = [utils.homogenize(bc) for bc in selfmat.bcs if isinstance(bc, dolfin.cpp.DirichletBC)] + [bc for bc in selfmat.bcs if not isinstance(bc, dolfin.cpp.DirichletBC)]

                    # This is really hideous. Sorry.
                    if isinstance(b.data, dolfin.Function):
                        rhs = b.data.vector().copy()
                        [bc.apply(rhs) for bc in selfmat.bcs]

                        if need_to_set_operator:
                            if assemble_system: # if we called assemble_system, rather than assemble
                                v = dolfin.TestFunction(fn_space)
                                (A, rhstmp) = dolfin.assemble_system(operators[0], dolfin.inner(b.data, v)*dolfin.dx, selfmat.bcs)
                                if has_preconditioner:
                                    (P, rhstmp) = dolfin.assemble_system(operators[1], dolfin.inner(b.data, v)*dolfin.dx, selfmat.bcs)
                                    solver.set_operators(A, P)
                                else:
                                    solver.set_operator(A)
                            else: # we called assemble
                                A = dolfin.assemble(operators[0])
                                [bc.apply(A) for bc in selfmat.bcs]
                                if has_preconditioner:
                                    P = dolfin.assemble(operators[1])
                                    [bc.apply(P) for bc in selfmat.bcs]
                                    solver.set_operators(A, P)
                                else:
                                    solver.set_operator(A)
                    else:

                        if assemble_system: # if we called assemble_system, rather than assemble
                            (A, rhs) = dolfin.assemble_system(operators[0], b.data, selfmat.bcs)
                            if need_to_set_operator:
                                if has_preconditioner:
                                    (P, rhstmp) = dolfin.assemble_system(operators[1], b.data, selfmat.bcs)
                                    solver.set_operators(A, P)
                                else:
                                    solver.set_operator(A)
                        else: # we called assemble
                            A = dolfin.assemble(operators[0])
                            rhs = dolfin.assemble(b.data)
                            [bc.apply(A) for bc in selfmat.bcs]
                            [bc.apply(rhs) for bc in selfmat.bcs]
                            if need_to_set_operator:
                                if has_preconditioner:
                                    P = dolfin.assemble(operators[1])
                                    [bc.apply(P) for bc in selfmat.bcs]
                                    solver.set_operators(A, P)
                                else:
                                    solver.set_operator(A)

                    if need_to_set_operator:
                        print "|A|: %.6e" % A.norm("frobenius")

                    # Set the nullspace for the linear operator
                    if nsp_ is not None and need_to_set_operator:
                        dolfin.as_backend_type(A).set_nullspace(nsp_)

                    # (Possibly override the user in) orthogonalize
                    # the right-hand-side
                    if tnsp_ is not None:
                        tnsp_.orthogonalize(rhs)

                    print "%s: |b|: %.6e" % (var, rhs.norm("l2"))
                    solver.solve(x.vector(), rhs)
                    return adjlinalg.Vector(x)

            solving.annotate(A == b, u, bcs, matrix_class=PETScKrylovSolverMatrix, initial_guess=parameters['nonzero_initial_guess'], replace_map=True)

        out = dolfin.PETScKrylovSolver.solve(self, *args, **kwargs)

        if to_annotate and dolfin.parameters["adjoint"]["record_all"]:
            adjglobals.adjointer.record_variable(adjglobals.adj_variables[u], libadjoint.MemoryStorage(adjlinalg.Vector(u)))

        return out
コード例 #17
0
ファイル: lusolver.py プロジェクト: ellipsis14/dolfin-adjoint
  def solve(self, *args, **kwargs):
    '''To disable the annotation, just pass :py:data:`annotate=False` to this routine, and it acts exactly like the
    Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
    for the purposes of the adjoint computation (such as projecting fields to other function spaces
    for the purposes of visualisation).'''

    to_annotate = utils.to_annotate(kwargs.pop("annotate", None))

    if to_annotate:
      if len(args) == 2:
        try:
          A = self.matrix.form
        except AttributeError:
          raise libadjoint.exceptions.LibadjointErrorInvalidInputs("Your matrix A has to have the .form attribute: was it assembled after from dolfin_adjoint import *?")

        try:
          self.op_bcs = self.matrix.bcs
        except AttributeError:
          self.op_bcs = []

        try:
          x = args[0].function
        except AttributeError:
          raise libadjoint.exceptions.LibadjointErrorInvalidInputs("Your solution x has to have a .function attribute; is it the .vector() of a Function?")

        try:
          b = args[1].form
        except AttributeError:
          raise libadjoint.exceptions.LibadjointErrorInvalidInputs("Your RHS b has to have the .form attribute: was it assembled after from dolfin_adjoint import *?")

        try:
          eq_bcs = misc.uniq(self.op_bcs + args[1].bcs)
        except AttributeError:
          eq_bcs = self.op_bcs

      elif len(args) == 3:
        A = args[0].form
        try:
          x = args[1].function
        except AttributeError:
          raise libadjoint.exceptions.LibadjointErrorInvalidInputs("Your solution x has to have a .function attribute; is it the .vector() of a Function?")

        try:
          self.op_bcs = A.bcs
        except AttributeError:
          self.op_bcs = []

        try:
          b = args[2].form
        except AttributeError:
          raise libadjoint.exceptions.LibadjointErrorInvalidInputs("Your RHS b has to have the .form attribute: was it assembled after from dolfin_adjoint import *?")

        try:
          eq_bcs = misc.uniq(self.op_bcs + args[2].bcs)
        except AttributeError:
          eq_bcs = self.op_bcs

      else:
        raise libadjoint.exceptions.LibadjointErrorInvalidInputs("LUSolver.solve() must be called with either (A, x, b) or (x, b).")

      if self.parameters["reuse_factorization"] and self.__global_list_idx__ is None:
        self.__global_list_idx__ = len(lu_solvers)
        lu_solvers.append(self)
        adj_lu_solvers.append(None)

      solving.annotate(A == b, x, eq_bcs, solver_parameters={"linear_solver": "lu"}, matrix_class=make_LUSolverMatrix(self.__global_list_idx__, self.parameters["reuse_factorization"]))

    out = dolfin.LUSolver.solve(self, *args, **kwargs)

    if to_annotate:
      if dolfin.parameters["adjoint"]["record_all"]:
        adjglobals.adjointer.record_variable(adjglobals.adj_variables[x], libadjoint.MemoryStorage(adjlinalg.Vector(x)))

    return out
コード例 #18
0
    def solve(self, *args, **kwargs):
        '''To disable the annotation, just pass :py:data:`annotate=False` to this routine, and it acts exactly like the
        Dolfin solve call. This is useful in cases where the solve is known to be irrelevant or diagnostic
        for the purposes of the adjoint computation (such as projecting fields to other function spaces
        for the purposes of visualisation).'''

        to_annotate = utils.to_annotate(kwargs.pop("annotate", None))
        nsp = self.nsp

        if to_annotate:
            if len(args) == 3:
                A = args[0]
                x = args[1]
                b = args[2]
            elif len(args) == 2:
                A = self.operators[0]
                x = args[0]
                b = args[1]

            bcs = []
            if hasattr(A, 'bcs'):
                bcs += A.bcs
            if hasattr(b, 'bcs'):
                bcs += b.bcs
            bcs = misc.uniq(bcs)

            assemble_system = A.assemble_system

            A = A.form
            u = x.function
            b = b.form

            if self.operators[1] is not None:
                P = self.operators[1].form
            else:
                P = None

            solver_parameters = self.solver_parameters
            parameters = self.parameters.to_dict()
            fn_space = u.function_space()
            has_preconditioner = P is not None

            class LinearSolverMatrix(adjlinalg.Matrix):
                def __init__(self, *args, **kwargs):
                    if 'initial_guess' in kwargs:
                        self.initial_guess = kwargs['initial_guess']
                        del kwargs['initial_guess']
                    else:
                        self.initial_guess = None

                    replace_map = kwargs['replace_map']
                    del kwargs['replace_map']

                    adjlinalg.Matrix.__init__(self, *args, **kwargs)

                    self.adjoint = kwargs['adjoint']
                    if P is None:
                        self.operators = (dolfin.replace(A, replace_map), None)
                    else:
                        self.operators = (dolfin.replace(A, replace_map), dolfin.replace(P, replace_map))

                def axpy(self, alpha, x):
                    raise libadjoint.exceptions.LibadjointErrorNotImplemented("Shouldn't ever get here")

                def solve(self, var, b):
                    if self.adjoint:
                        operators = transpose_operators(self.operators)
                    else:
                        operators = self.operators

                    solver = dolfin.LinearSolver(*solver_parameters)
                    solver.parameters.update(parameters)

                    x = dolfin.Function(fn_space)
                    if self.initial_guess is not None and var.type == 'ADJ_FORWARD':
                        x.vector()[:] = self.initial_guess.vector()

                    if b.data is None:
                        dolfin.info_red("Warning: got zero RHS for the solve associated with variable %s" % var)
                        return adjlinalg.Vector(x)

                    if var.type in ['ADJ_TLM', 'ADJ_ADJOINT']:
                        self.bcs = [utils.homogenize(bc) for bc in self.bcs if isinstance(bc, dolfin.cpp.DirichletBC)] + [bc for bc in self.bcs if not isinstance(bc, dolfin.cpp.DirichletBC)]

                    # This is really hideous. Sorry.
                    if isinstance(b.data, dolfin.Function):
                        rhs = b.data.vector().copy()
                        [bc.apply(rhs) for bc in self.bcs]

                        if assemble_system: # if we called assemble_system, rather than assemble
                            v = dolfin.TestFunction(fn_space)
                            (A, rhstmp) = dolfin.assemble_system(operators[0], dolfin.inner(b.data, v)*dolfin.dx, self.bcs)
                            if has_preconditioner:
                                (P, rhstmp) = dolfin.assemble_system(operators[1], dolfin.inner(b.data, v)*dolfin.dx, self.bcs)
                                solver.set_operators(A, P)
                            else:
                                solver.set_operator(A)
                        else: # we called assemble
                            A = dolfin.assemble(operators[0])
                            [bc.apply(A) for bc in self.bcs]

                            # Set nullspace
                            if nsp:
                                dolfin.as_backend_type(A).set_nullspace(nsp)
                                nsp.orthogonalize(b);

                            if has_preconditioner:
                                P = dolfin.assemble(operators[1])
                                [bc.apply(P) for bc in self.bcs]
                                solver.set_operators(A, P)
                            else:
                                solver.set_operator(A)
                    else:

                        if assemble_system: # if we called assemble_system, rather than assemble
                            (A, rhs) = dolfin.assemble_system(operators[0], b.data, self.bcs)
                            if has_preconditioner:
                                (P, rhstmp) = dolfin.assemble_system(operators[1], b.data, self.bcs)
                                solver.set_operators(A, P)
                            else:
                                solver.set_operator(A)
                        else: # we called assemble
                            A = dolfin.assemble(operators[0])
                            rhs = dolfin.assemble(b.data)
                            [bc.apply(A) for bc in self.bcs]
                            [bc.apply(rhs) for bc in self.bcs]

                            # Set nullspace
                            if nsp:
                                dolfin.as_backend_type(A).set_nullspace(nsp)
                                nsp.orthogonalize(rhs);

                            if has_preconditioner:
                                P = dolfin.assemble(operators[1])
                                [bc.apply(P) for bc in self.bcs]
                                solver.set_operators(A, P)
                            else:
                                solver.set_operator(A)

                    solver.solve(x.vector(), rhs)
                    return adjlinalg.Vector(x)

            nonzero_initial_guess = parameters['nonzero_initial_guess'] if 'nonzero_initial_guess' in parameters.keys() else False
            solving.annotate(A == b, u, bcs, matrix_class=LinearSolverMatrix, initial_guess=nonzero_initial_guess, replace_map=True)

        out = dolfin.LinearSolver.solve(self, *args, **kwargs)

        if to_annotate and dolfin.parameters["adjoint"]["record_all"]:
            adjglobals.adjointer.record_variable(adjglobals.adj_variables[u], libadjoint.MemoryStorage(adjlinalg.Vector(u)))

        return out
コード例 #19
0
def dolfin_adjoint_assign(self, other, annotate=None, *args, **kwargs):
    '''We also need to monkeypatch the Function.assign method, as it is often used inside
    the main time loop, and not annotating it means you get the adjoint wrong for totally
    nonobvious reasons. If anyone objects to me monkeypatching your objects, my apologies
    in advance.'''

    if self is other:
        return

    to_annotate = utils.to_annotate(annotate)
    # if we shouldn't annotate, just assign
    if not to_annotate:
        return dolfin_assign(self, other, *args, **kwargs)

    if isinstance(other, ufl.algebra.Sum) or isinstance(other, ufl.algebra.Product):
        if backend.__name__ != 'dolfin':
            errmsg = '''Cannot use Function.assign(linear combination of other Functions) yet.'''
            raise libadjoint.exceptions.LibadjointErrorNotImplemented(errmsg)
        else:
            lincom = _check_and_contract_linear_comb(other, self)
    else:
        lincom = [(other, 1.0)]

    # ignore anything not a backend.Function, unless the user insists
    if not isinstance(other, backend.Function) and (annotate is not True):
        return dolfin_assign(self, other, *args, **kwargs)

    # ignore anything that is an interpolation, rather than a straight assignment
    if hasattr(self, "function_space") and hasattr(other, "function_space"):
        if str(self.function_space()) != str(other.function_space()):
            return dolfin_assign(self, other, *args, **kwargs)


    functions, weights = zip(*lincom)

    self_var = adjglobals.adj_variables[self]
    function_vars = [adjglobals.adj_variables[function] for function in functions]

    # ignore any functions we haven't seen before -- we DON'T want to
    # annotate the assignment of initial conditions here. That happens
    # in the main solve wrapper.
    for function_var in function_vars:
        if not adjglobals.adjointer.variable_known(function_var) and not adjglobals.adjointer.variable_known(self_var) and (annotate is not True):
            [adjglobals.adj_variables.forget(function) for function in functions]
            adjglobals.adj_variables.forget(self)

            return dolfin_assign(self, other, *args, **kwargs)

    # OK, so we have a variable we've seen before. Beautiful.
    if not adjglobals.adjointer.variable_known(self_var):
        adjglobals.adj_variables.forget(self)

    out = dolfin_assign(self, other, *args, **kwargs)

    fn_space = self.function_space()
    identity_block = utils.get_identity_block(fn_space)
    dep = adjglobals.adj_variables.next(self)

    if backend.parameters["adjoint"]["record_all"]:
        adjglobals.adjointer.record_variable(dep, libadjoint.MemoryStorage(adjlinalg.Vector(self)))

    rhs = LinComRHS(functions, weights, fn_space)
    register_initial_conditions(zip(rhs.coefficients(),rhs.dependencies()), linear=True)
    initial_eq = libadjoint.Equation(dep, blocks=[identity_block], targets=[dep], rhs=rhs)
    cs = adjglobals.adjointer.register_equation(initial_eq)

    do_checkpoint(cs, dep, rhs)

    return out