コード例 #1
0
ファイル: vgg19.py プロジェクト: liushuchun/machinelearning
def main():

    num_outputs = 10
    architecture = ((2, 64), (2, 128), (4, 256), (4, 512), (4, 512))

    net = nn.Sequential()
    with net.name_scope():
        net.add(
            vgg_stack(architecture),
            nn.Flatten(),
            nn.Dense(4096, activation="relu"),
            nn.Dropout(.5),
            nn.Dense(4096, activation="relu"),
            nn.Dropout(.5),
            nn.Dense(num_outputs))

    train_data, test_data = utils.load_data_fashion_mnist(
        batch_size=64, resize=96)

    ctx = utils.try_gpu()

    net.initialize(ctx=ctx, init=init.Xavier())

    loss = gluon.loss.SoftmaxCrossEntropyLoss()

    trainer = gluon.Trainer(net.collect_params(), 'sgd', {
                            'learning_rate': 0.05})
    utils.train(train_data, test_data, net, loss, trainer, ctx, num_epochs=100)
コード例 #2
0
def train(net, ctx, train_data, test_data, batch_size=64, epochs=1, learning_rate=0.001, wd=0.001):

    # 确保net的初始化在ctx上
    net.collect_params().reset_ctx(ctx)
    net.hybridize()
    loss = gluon.loss.SoftmaxCrossEntropyLoss()
    # 训练
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {
        'learning_rate': learning_rate, 'wd': wd})
    utils.train(train_data, test_data, net, loss, trainer, ctx, epochs, 10)
コード例 #3
0
ファイル: demo.py プロジェクト: z01nl1o02/tests
def main():
    
    net = get_net()
    net_str = '%s'%net
    logging.info('ok')
    logging.info(net_str)
    if pretrained is not None:
        net.load_params(pretrained,ctx=utils.try_gpu())
    trainIter, testIter = get_train_test()
    trainer,loss = get_trainer(net)
    utils.train(trainIter, testIter, net, loss, trainer, utils.try_gpu(), 1000,print_batches=100, cpdir='cp')
コード例 #4
0
ファイル: demo.py プロジェクト: z01nl1o02/tests
def main():
    
    net = get_net()
    net_str = '%s'%net
    #logging.info('ok')
    logging.info(net_str)
    if pretrained is not None:
        net.load_params(pretrained,ctx=utils.try_gpu())
    train_data, test_data = get_train_test()
    trainer,loss = get_trainer(net)
    utils.train(train_data, test_data, trainBatchSize,\
        net, loss, trainer, utils.try_gpu(), 1000,\
        500,0.1,print_batches=100, chk_pts_dir=checkpoints)
コード例 #5
0
ファイル: train.py プロジェクト: codealphago/yolo2-pytorch
def main():
    args = make_args()
    config = configparser.ConfigParser()
    utils.load_config(config, args.config)
    for cmd in args.modify:
        utils.modify_config(config, cmd)
    with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
        logging.config.dictConfig(yaml.load(f))
    if args.run is None:
        buffer = io.StringIO()
        config.write(buffer)
        args.run = hashlib.md5(buffer.getvalue().encode()).hexdigest()
    logging.info('cd ' + os.getcwd() + ' && ' + subprocess.list2cmdline([sys.executable] + sys.argv))
    train = Train(args, config)
    train()
    logging.info(pybenchmark.stats)
コード例 #6
0
ファイル: train.py プロジェクト: BinbinBian/iclr2016
    raise ValueError('Task should be ent, sim, or sentiment.')

model = None

print sys.argv

if params.nntype == 'lstm':
    model = lstm_model_sim(We, params)
elif params.nntype == 'word':
    model = word_model_sim(We, params)
elif params.nntype == 'proj':
    model = proj_model_sim(We, params)
elif params.nntype == 'dan':
    model = dan_model_sim(We, params)
elif params.nntype == 'rnn':
    model = rnn_model_sim(We, params)
elif params.nntype == 'lstm_sentiment':
    model = lstm_model_sentiment(We, params)
elif params.nntype == 'word_sentiment':
    model = word_model_sentiment(We, params)
elif params.nntype == 'proj_sentiment':
    model = proj_model_sentiment(We, params)
elif params.nntype == 'dan_sentiment':
    model = dan_model_sentiment(We, params)
elif params.nntype == 'rnn_sentiment':
    model = rnn_model_sentiment(We, params)
else:
    "Error no type specified"

utils.train(model, train_data, params.devdata, params.testdata, params.traindata, words, params)
コード例 #7
0
    forward = fw_init.transduce(embedded)
    backward = bw_init.transduce(embedded)
    return dy.concatenate([forward[-1], backward[-1]])


def calc_lm_loss(words):
    dy.renew_cg()

    sm_w = dy.parameter(softmax_w)
    sm_b = dy.parameter(softmax_b)

    w_init = word_lstm.initial_state()
    fw_init = char_fw_lstm.initial_state()
    bw_init = char_bw_lstm.initial_state()

    word_embeddings = [word_rep(w, fw_init, bw_init) for w in words]
    labels = [word_vocab.get(w) for w in words]

    s = w_init.add_input(word_rep(words[-1], fw_init, bw_init))

    losses = []
    for word_emb, label in zip(word_embeddings, labels):
        logits = sm_w * s.output() + sm_b
        loss = dy.pickneglogsoftmax(logits, label)
        losses.append(loss)
        s = s.add_input(word_emb)
    return dy.esum(losses)


train(model, trainer, calc_lm_loss, num_epochs, "models/compositional")
コード例 #8
0
from mxnet.gluon import nn

net = nn.Sequential()
with net.name_scope():
    net.add(nn.Conv2D(channels=20, kernel_size=5, activation='relu'),
            nn.MaxPool2D(pool_size=2, strides=2),
            nn.Conv2D(channels=50, kernel_size=3, activation='relu'),
            nn.MaxPool2D(pool_size=2, strides=2), nn.Flatten(),
            nn.Dense(128, activation="relu"), nn.Dense(10))

from mxnet import gluon
import sys
sys.path.append('..')
import utils

ctx = utils.try_gpu()
net.initialize(ctx=ctx)
print('initialize weight on', ctx)

batch_size = 256
train_data, test_data = utils.load_data_fashion_mnist(batch_size)

loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.5})
utils.train(train_data, test_data, net, loss, trainer, ctx, num_epochs=5)
コード例 #9
0
def main():
    parser = argparse.ArgumentParser(description='PyTorch CIFAR Training')
    parser.add_argument('--teacher_depth', default=100, type=int, help='')
    parser.add_argument('--teacher_width', default=12, type=int, help='')
    parser.add_argument('--teacher_mult', default=4.0, type=float, help='')
    parser.add_argument('--depth', default=100, type=int, help='')
    parser.add_argument('--width', default=11, type=int, help='')
    parser.add_argument('--mult', default=4.0, type=float, help='')
    parser.add_argument('--hkd', default=0., type=float, help='')
    parser.add_argument('--temp', default=0., type=float, help='')
    parser.add_argument('--gkd', default=0., type=float, help='')
    parser.add_argument('--p', default=1, type=int, help='')
    parser.add_argument('--seed', default=0, type=int, help='')
    parser.add_argument('--k', default=128, type=int, help='')
    parser.add_argument('--pool3', action='store_true', help='')
    parser.add_argument('--intra_only', action='store_true', help='')
    parser.add_argument('--inter_only', action='store_true', help='')
    args = parser.parse_args()
    save = "L2Loss_{}-{}-{}_teaches_{}-{}-{}_{}_{}_{}_{}_{}_{}_{}_{}_{}".format(
        args.teacher_depth, args.teacher_width, args.teacher_mult, args.depth,
        args.width, args.mult, args.hkd, args.temp, args.gkd, args.p, args.k,
        args.pool3, args.intra_only, args.inter_only, args.seed)

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    trainloader, testloader, clean_trainloader = load_data(128)
    file = "checkpoint/FinetuneDensenet{}-{}-{}_3.pth".format(
        args.teacher_depth, args.teacher_width, args.teacher_mult)
    teacher = torch.load(file)["net"].module
    teacher = teacher.to(device)
    #    net = models.nearmobile.NearMobileNetStart(depth=args.depth,width=args.width,expansion=args.mult,num_classes=10)
    net = models.densenet.densenet_cifar(n=args.depth,
                                         growth_rate=args.width,
                                         bottle_size=args.mult,
                                         num_classes=10)
    net = net.to(device)
    #    net.bn = teacher.bn
    #    net.linear = teacher.linear
    #    net.conv1 = teacher.conv1
    #    net.trans1 = copy.deepcopy(teacher.trans1)
    #    net.trans2 = copy.deepcopy(teacher.trans2)
    #    net.trans3 = copy.deepcopy(teacher.trans3)
    parameters = list()
    #    ignore = [net.bn, net.linear, net.conv1]
    ignore = list()
    for a in net.parameters():
        for b in ignore:
            if a is b.weight or a is b.bias:
                print(a.size())
                continue
        parameters.append(a)
    if device == 'cuda':
        net = torch.nn.DataParallel(net)
        cudnn.benchmark = True


#    optimizer = optim.Adam(parameters, lr=0.001)
#    optimizer = optim.SGD(parameters, lr=0.1, momentum=0.9,nesterov=True,weight_decay=1e-4)
#    scheduler = ReduceLROnPlateau(optimizer, factor=0.2,patience=5,threshold=1e-4,verbose=True)
    optimizer = optim.SGD(net.parameters(),
                          lr=0.05,
                          momentum=0.9,
                          nesterov=True,
                          weight_decay=1e-4)
    scheduler = MultiStepLR(optimizer, milestones=[150, 225], gamma=0.1)
    predicted_teacher, labels = test(teacher,
                                     clean_trainloader,
                                     device,
                                     save_name="no")
    predicted_teacher, labels = test(teacher,
                                     trainloader,
                                     device,
                                     save_name="no")
    predicted_teacher, labels = test(teacher,
                                     testloader,
                                     device,
                                     save_name="no")
    for epoch in range(300):
        print('Epoch: %d' % epoch)
        train(net,
              trainloader,
              scheduler,
              device,
              optimizer,
              teacher=teacher,
              lambda_hkd=args.hkd,
              lambda_gkd=args.gkd,
              temp=args.temp,
              classes=10,
              power=args.p,
              pool3_only=args.pool3,
              k=args.k,
              intra_only=args.intra_only,
              inter_only=args.inter_only)
        predicted_student, labels = test(net,
                                         testloader,
                                         device,
                                         save_name=save)
        consistency = 100 * (predicted_teacher == predicted_student).float()
        teacher_true = predicted_teacher == labels
        teacher_false = predicted_teacher != labels
        consistency_true = consistency[teacher_true].mean()
        consistency_false = consistency[teacher_false].mean()
        consistency = consistency.mean()
        print("Consistency: {:.2f} (T: {:.2f}, F: {:.2f})%".format(
            consistency, consistency_true, consistency_false))
        lr = optimizer.param_groups[0]['lr']
        if lr <= 0.000001:
            break
コード例 #10
0
    optimizer = optim.SGD(clf.parameters(), lr=args.lr, weight_decay=args.wd, momentum=args.mom)
    criterion = nn.CrossEntropyLoss()

    # Multiplies the LR with 0.1 at epoch 100 and 150 as mentioned in the paper
    lmd = lambda x: 0.1 if x in [100,150] else 1
    scheduler = lr_scheduler.MultiplicativeLR(optimizer, lr_lambda=lmd)

    trainloader = DataLoader(fmnist_train, batch_size=args.batch_size, shuffle=True)
    testloader = DataLoader(fmnist_test, batch_size=args.batch_size, shuffle=False)

    best_loss = np.inf

    for epoch in range(args.epochs):

        t_loss, t_acc = train(epoch, trainloader, clf, criterion, optimizer, scheduler=None, msda=args.msda)
        
        print('Epoch {}/{} (train) || Loss: {:.4f} Acc: {:.4f} LR: {(optimizer.param_groups[0]['lr']):.5f}'.format(epoch+1, EPOCHS, t_loss, t_acc, lr))

        test_loss, test_acc = test(epoch, testloader, clf, criterion)
        
        print('Epoch {}/{} (test) || Loss: {:.4f} Acc: {:.4f}'.format(epoch+1, EPOCHS, test_loss, test_acc))


        scheduler.step()  


        if test_loss<best_loss:
            torch.save(clf.state_dict(), os.path.join(args.save_dir, f'{args.msda}_weight.pt'))
            best_loss = test_loss
コード例 #11
0
    parser.add_argument("--gpu", type=str, default="0", help="set gpu to '' to use CPU mode")
    parser.add_argument("--num_epochs", type=int, default=45)
    parser.add_argument("--embedding_dim", type=int, default=300, help="Word2Vec dimension")
    parser.add_argument("--sequence_length", type=int, default=20, help="final length of each sequence (premise and hypothesis), padded with null-words if needed")
    parser.add_argument("--num_units", type=int, default=100, help="LSTM output dimension (k in the original paper)")
    args = parser.parse_args()

    # PARAMETERS
    parameters = {
                    "runs_dir": RUNS_DIR,
                    "embedding_dim": args.embedding_dim,
                    "num_units": args.num_units,
                    "num_epochs": args.num_epochs,
                    "learning_rate": args.learning_rate,
                    "keep_prob": args.keep_prob,
                    "model_name": args.model_name,
                    "gpu": args.gpu or None,
                    "batch_size": {"train": args.batch_size_train, "dev": args.batch_size_dev, "test": args.batch_size_test},
                    "sequence_length": args.sequence_length,
                    "weight_decay": args.weight_decay,
                }

    for key, parameter in parameters.iteritems():
        print "{}: {}".format(key, parameter)

    # MAIN
    word2vec, dataset = load_data(data_dir=args.data_dir, word2vec_path=args.word2vec_path)

    if args.train:
        train(word2vec=word2vec, dataset=dataset, parameters=parameters)
コード例 #12
0
ファイル: A2C.py プロジェクト: elumixor/DRL
        # Then select only the probabilities corresponding to sampled actions
        probabilities = actor(states)
        probabilities = probabilities[range(states.shape[0]),
                                      actions.flatten()]
        loss_actor = (-torch.log(probabilities) * advantage).sum()

        # Take the weighted average (helps convergence)
        loss += loss_critic + loss_actor
        total_len += states.shape[0]

    loss = loss / total_len

    optim_actor.zero_grad()
    optim_critic.zero_grad()
    loss.backward()
    optim_actor.step()
    optim_critic.step()

    actor.eval()
    critic.eval()


# Train, provide an env, function to get an action from state, and training function that accepts rollouts
train(env,
      get_action,
      train_epoch,
      epochs=2000,
      num_rollouts=10,
      print_frequency=10,
      plot_frequency=50)
コード例 #13
0
from utils import train
import data
from resnet import resnet
import torch
from torch import nn

DEBUG = False
BATCH_SIZE = 64
LR = 1e-3

if __name__ == "__main__":
    trainset, testset = data.get_train_test_set()
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=BATCH_SIZE,
                                              shuffle=True)
    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=BATCH_SIZE,
                                             shuffle=False)
    net = resnet(in_channel=3, num_classes=1)
    optimizer = torch.optim.Adam(net.parameters(), lr=LR)
    criterion = nn.BCELoss()
    train(
        net,
        trainloader,
        testloader,
        20,
        optimizer,
        criterion,
        debug=DEBUG,
    )
コード例 #14
0
ファイル: lenet5.py プロジェクト: cornell-brg/hb-pytorch-apps
    if args.load_model:
        model.load_state_dict(torch.load(args.model_filename))

    # Move model to HammerBlade if using HB
    if args.hammerblade:
        model.to(torch.device("hammerblade"))

    print(model)

    # Quit here if dry run
    if args.dry:
        exit(0)

    # Training
    if args.training:
        utils.train(model, trainloader, optimizer, loss_func, args)

    # Inference
    if args.inference:

        num_correct = [0]

        def collector(outputs, targets):
            pred = outputs.cpu().max(1)[1]
            num_correct[0] += pred.eq(targets.cpu().view_as(pred)).sum().item()

        utils.inference(model, testloader, loss_func, collector, args)

        num_correct = num_correct[0]
        test_accuracy = 100. * (num_correct / len(testloader.dataset))
コード例 #15
0
def main():
    parser = argparse.ArgumentParser(
        description='train a convolutional network' + 'on the MAPS dataset')
    parser.add_argument('splits', type=str, help='on which splits to train')
    parser.add_argument('run_path', type=str, help='where to write run state')
    parser.add_argument(
        'model',
        choices=models.get_model_classes(),
        help='any classname of model as defined in "models.py"')
    parser.add_argument('--device', type=str, default='cuda')
    args = parser.parse_args()

    cuda = False
    if args.device.startswith('cpu'):
        cuda = False
    elif args.device.startswith('cuda'):
        cuda = True
    else:
        print('unknown device type "{}"'.format(args.device))
        exit(-1)

    run_path = args.run_path
    if os.path.exists(run_path):
        print('run_path "{}" already exists!'.format(run_path))
        exit(-1)

    ##########################################
    # prepare train data
    train_filenames = filenames_from_splitfile(
        os.path.join(args.splits, 'train'))
    train_sequences = datasets.get_sequences(train_filenames)

    train_dataset = ConcatDataset(train_sequences)

    batch_size = 128
    n_epochs = 500

    # go with the original definition of an 'epoch' (aka the whole dataset ...)
    # as opposed to 'arbitrary number of steps until we validate'
    # n_steps = 8192
    n_steps = len(train_dataset) // batch_size
    print('adjusted n_steps', n_steps)

    # one train loader for all train sequences
    train_loader = DataLoader(train_dataset,
                              batch_size=batch_size,
                              sampler=ChunkedRandomSampler(
                                  train_dataset, batch_size * n_steps),
                              num_workers=1,
                              pin_memory=True,
                              drop_last=True)

    # prepare valid data as individual sequences
    valid_filenames = filenames_from_splitfile(
        os.path.join(args.splits, 'valid'))

    # to get all of the sequence data, just write this:
    valid_sequences = datasets.get_sequences(valid_filenames)

    valid_loaders = []
    for valid_sequence in valid_sequences:
        valid_loader = DataLoader(valid_sequence,
                                  batch_size=1024,
                                  sampler=SequentialSampler(valid_sequence),
                                  num_workers=0,
                                  pin_memory=False,
                                  drop_last=False)
        valid_loaders.append(valid_loader)

    log_dir = os.path.join(run_path, 'tensorboard')
    ensure_empty_directory_exists(log_dir)
    logger = SummaryWriter(log_dir=log_dir)

    net_class = getattr(models, args.model, None)
    if net_class is None:
        raise RuntimeError(
            'could not find model class named "{}" in "models.py"'.format(
                args.model))

    net = net_class()
    if args.model == 'AllConv2016':
        print('choosing AllConv2016 learnrate and learnrate schedule!')
        # this does not train all that well ... validation loss stays high all the time?
        optimizer = optim.SGD(net.parameters(),
                              lr=1.0,
                              momentum=0.9,
                              weight_decay=1e-5,
                              nesterov=False)
        milestones = list(range(10, n_epochs, 10))
        scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
                                                   milestones,
                                                   gamma=0.5)
    else:
        print('choosing VGGNet2016 learnrate and learnrate schedule!')
        # this leads to the results from 2016 in ~5 epochs
        optimizer = optim.SGD(net.parameters(),
                              lr=0.1,
                              momentum=0.9,
                              weight_decay=1e-5,
                              nesterov=False)
        scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                         mode='min',
                                                         factor=0.5,
                                                         patience=20,
                                                         verbose=True,
                                                         min_lr=1e-4)

    if cuda:
        net.cuda()

    train(cuda=cuda,
          run_path=run_path,
          net=net,
          optimizer=optimizer,
          scheduler=scheduler,
          n_epochs=n_epochs,
          train_loader=train_loader,
          valid_loader=valid_loaders,
          logger=logger)
コード例 #16
0
ファイル: train.py プロジェクト: VividLe/DAVIS_challenge_2018
def main():

    torch.cuda.manual_seed(seed)
    cudnn.benchmark = CUDNN

    # model
    model = tiramisu.FCDenseNet67(in_channels=8, n_classes=N_CLASSES)
    model = model.cuda()
    # model = torch.nn.DataParallel(model).cuda()
    print('  + Number of params: {}'.format(
        sum([p.data.nelement() for p in model.parameters()])))
    model.apply(utils.weights_init)
    optimizer = optim.RMSprop(model.parameters(),
                              lr=LEARNING_RATE,
                              weight_decay=WEIGHT_DECAY,
                              eps=1e-12)
    criterion = nn.NLLLoss2d().cuda()

    exp = experiment.Experiment(EXPNAME, EXPERIMENT)
    exp.init()

    START_EPOCH = exp.epoch
    END_EPOCH = START_EPOCH + N_EPOCHS

    # for epoch in range(1):
    for epoch in range(START_EPOCH, END_EPOCH):

        since = time.time()

        # ### Collect data ###
        # delete existing folder and old data
        if os.path.exists(res_root_path):
            shutil.rmtree(res_root_path)
        utils.collect_data(ori_train_base_rp, res_train_base_rp)
        utils.collect_data(ori_val_base_rp, res_val_base_rp)
        # data loader
        train_loader, val_loader = utils.data_loader(res_root_path)

        ### Train ###
        trn_loss, trn_err = utils.train(model, train_loader, optimizer,
                                        criterion, epoch)
        print('Epoch {:d}: Train - Loss: {:.4f}\tErr: {:.4f}'.format(
            epoch, trn_loss, trn_err))
        time_elapsed = time.time() - since
        print('Train Time {:.0f}m {:.0f}s'.format(time_elapsed // 60,
                                                  time_elapsed % 60))

        ### val ###
        val_loss, val_err = utils.test(model, val_loader, criterion, epoch)
        print('Val - Loss: {:.4f}, Error: {:.4f}'.format(val_loss, val_err))
        time_elapsed = time.time() - since
        print('Total Time {:.0f}m {:.0f}s\n'.format(time_elapsed // 60,
                                                    time_elapsed % 60))

        ### Save Metrics ###
        exp.save_history('train', trn_loss, trn_err)
        exp.save_history('val', val_loss, val_err)

        ### Checkpoint ###
        exp.save_weights(model, trn_loss, val_loss, trn_err, val_err)
        exp.save_optimizer(optimizer, val_loss)

        ## Early Stopping ##
        if (epoch - exp.best_val_loss_epoch) > MAX_PATIENCE:
            print(("Early stopping at epoch %d since no " +
                   "better loss found since epoch %.3").format(
                       epoch, exp.best_val_loss))
            break

        utils.adjust_learning_rate(LEARNING_RATE, LR_DECAY, optimizer, epoch,
                                   DECAY_LR_EVERY_N_EPOCHS)

        exp.epoch += 1
コード例 #17
0
ファイル: session.py プロジェクト: kawu/hhu-dl-materials-2020
    """Calculate the head prediction accuracy of the model on the given dataset
    of (encoded) input/output pairs."""
    correct, total = 0, 0
    for x, y in data:
        pred_y = torch.argmax(model(x)[1], dim=1)
        correct += (y[1] == pred_y).sum()
        total += len(y[1])
    return float(correct) / total


def loss(pred: Tuple[Tensor, Tensor], gold: Tuple[Tensor, Tensor]) -> Tensor:
    criterion = nn.CrossEntropyLoss()
    return criterion(pred[0], gold[0]) + criterion(pred[1], gold[1])


train(model,
      enc_train,
      enc_dev,
      loss,
      pos_accuracy,
      epoch_num=10,
      learning_rate=0.001,
      report_rate=1)
train(model,
      enc_train,
      enc_dev,
      loss,
      dep_accuracy,
      epoch_num=10,
      learning_rate=0.0001,
      report_rate=1)
コード例 #18
0
else:
	raise AssertionError("Wrong Model Type!")

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion.to(device)

best_val_acc = 0.0
train_losses, train_accuracies = [], []
valid_losses, valid_accuracies = [], []

for epoch in range(NUM_EPOCHS):
	train_loss, train_accuracy = train(model, device, train_loader, criterion, optimizer, epoch)
	valid_loss, valid_accuracy, valid_results = evaluate(model, device, valid_loader, criterion)

	train_losses.append(train_loss)
	valid_losses.append(valid_loss)

	train_accuracies.append(train_accuracy)
	valid_accuracies.append(valid_accuracy)

	is_best = valid_accuracy > best_val_acc  # let's keep the model that has the best accuracy, but you can also use another metric.
	if is_best:
		best_val_acc = valid_accuracy
		torch.save(model, os.path.join(PATH_OUTPUT, save_file))

plot_learning_curves(train_losses, valid_losses, train_accuracies, valid_accuracies)
コード例 #19
0
                                       momentum=0.9).minimize(loss)
# merged_summary_op = tf.summary.merge_all()
# weights_conv1 = utils.get_weight_variable('conv1')
# weights_conv2 = utils.get_weight_variable('conv2')

with utils.create_session() as sess:
    saver = tf.train.Saver()
    sess.run(tf.global_variables_initializer())

    best_test_accuracy = -1
    best_test_accuracy_epoch = 0
    for epoch in range(max_epochs):
        train_accuracy, train_loss, train_time_spent = utils.train(
            data.train, train_batch_size,
            lambda batch_x, batch_y: sess.run([optimazer, guesses, loss],
                                              feed_dict={
                                                  x: batch_x,
                                                  y_true: batch_y
                                              }))
        test_accuracy, test_time_spent = utils.test(
            data.test, test_batch_size,
            lambda batch_x, batch_y: sess.run([guesses],
                                              feed_dict={
                                                  x: batch_x,
                                                  y_true: batch_y
                                              }))

        print(
            "epoch: {:02d} train_accuracy: {:3.2f}% train_loss: {:2.3f} time: {:2.2f}s\n"
            "           test_accuracy: {:3.2f}%                     time: {:2.2f}s"
            .format(epoch + 1, train_accuracy, train_loss, train_time_spent,
コード例 #20
0
ファイル: unet.py プロジェクト: yxinjiang/kaggle-lions-2017
def main():
    parser = argparse.ArgumentParser()
    arg = parser.add_argument
    arg('root', help='checkpoint root')
    arg('--batch-size', type=int, default=32)
    arg('--patch-size', type=int, default=256)
    arg('--n-epochs', type=int, default=100)
    arg('--lr', type=float, default=0.0001)
    arg('--workers', type=int, default=2)
    arg('--fold', type=int, default=1)
    arg('--bg-weight', type=float, default=1.0, help='background weight')
    arg('--dice-weight', type=float, default=0.0)
    arg('--n-folds', type=int, default=5)
    arg('--stratified', action='store_true')
    arg('--mode', choices=[
        'train', 'valid', 'predict_valid', 'predict_test', 'predict_all_valid'],
        default='train')
    arg('--model-path',
        help='path to model file to use for validation/prediction')
    arg('--clean', action='store_true')
    arg('--epoch-size', type=int)
    arg('--limit', type=int, help='Use only N images for train/valid')
    arg('--min-scale', type=float, default=1)
    arg('--max-scale', type=float, default=1)
    arg('--test-scale', type=float, default=0.5)
    arg('--oversample', type=float, default=0.0,
        help='sample near lion with given probability')
    arg('--with-head', action='store_true')
    arg('--pred-oddity', type=int, help='set to 0/1 to predict even/odd images')
    args = parser.parse_args()

    coords = utils.load_coords()
    train_paths, valid_paths = utils.train_valid_split(args, coords)
    root = Path(args.root)
    model = UNetWithHead() if args.with_head else UNet()
    model = utils.cuda(model)
    criterion = Loss(dice_weight=args.dice_weight, bg_weight=args.bg_weight)
    loader_kwargs = dict(
        min_scale=args.min_scale, max_scale=args.max_scale,
        downscale=args.with_head,
    )
    if args.mode == 'train':
        train_loader, valid_loader = (
            utils.make_loader(
                SegmentationDataset, args, train_paths, coords,
                oversample=args.oversample, **loader_kwargs),
            utils.make_loader(
                SegmentationDataset, args, valid_paths, coords,
                deterministic=True, **loader_kwargs))
        if root.exists() and args.clean:
            shutil.rmtree(str(root))
        root.mkdir(exist_ok=True)
        root.joinpath('params.json').write_text(
            json.dumps(vars(args), indent=True, sort_keys=True))
        utils.train(args, model, criterion,
                    train_loader=train_loader, valid_loader=valid_loader,
                    save_predictions=save_predictions)
    elif args.mode == 'valid':
        utils.load_best_model(model, root, args.model_path)
        valid_loader = utils.make_loader(
            SegmentationDataset, args, valid_paths, coords,
            deterministic=True, **loader_kwargs)
        utils.validation(model, criterion,
                         tqdm.tqdm(valid_loader, desc='Validation'))
    else:
        utils.load_best_model(model, root, args.model_path)
        if args.mode in {'predict_valid', 'predict_all_valid'}:
            if args.mode == 'predict_all_valid':
                # include all paths we did not train on (makes sense only with --limit)
                valid_paths = list(
                    set(valid_paths) | (set(utils.labeled_paths()) - set(train_paths)))
            predict(model, valid_paths, out_path=root,
                    patch_size=args.patch_size, batch_size=args.batch_size,
                    min_scale=args.min_scale, max_scale=args.max_scale,
                    downsampled=args.with_head)
        elif args.mode == 'predict_test':
            out_path = root.joinpath('test')
            out_path.mkdir(exist_ok=True)
            predicted = {p.stem.split('-')[0] for p in out_path.glob('*.npy')}
            test_paths = [p for p in utils.DATA_ROOT.joinpath('Test').glob('*.jpg')
                          if p.stem not in predicted]
            if args.pred_oddity is not None:
                assert args.pred_oddity in {0, 1}
                test_paths = [p for p in test_paths
                              if int(p.stem) % 2 == args.pred_oddity]
            predict(model, test_paths, out_path,
                    patch_size=args.patch_size, batch_size=args.batch_size,
                    test_scale=args.test_scale,
                    is_test=True, downsampled=args.with_head)
        else:
            parser.error('Unexpected mode {}'.format(args.mode))
train_set = CIFAR10('C:/DATASETS/cifar10/', train=True, transform=train_tf)
train_data = torch.utils.data.DataLoader(train_set,
                                         batch_size=64,
                                         shuffle=True)
test_set = CIFAR10('C:/DATASETS/cifar10/', train=False, transform=test_tf)
test_data = torch.utils.data.DataLoader(test_set,
                                        batch_size=128,
                                        shuffle=False)

net = resnet(3, 10)
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()

#%%
train(net, train_data, test_data, 10, optimizer, criterion)


#%%
# 不使用数据增强
def data_tf(x):
    im_aug = tfs.Compose([
        tfs.Resize(96),
        tfs.ToTensor(),
        tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ])
    x = im_aug(x)
    return x


train_set = CIFAR10('C:/DATASETS/cifar10/', train=True, transform=data_tf)
コード例 #22
0
ファイル: train.py プロジェクト: BinbinBian/charagram
        params.clip = None
else:
    params.clip = None

model = None
print sys.argv

if params.domain == "pos":
    trainexamples = utils.get_pos_data(params.traindata)
    devexamples = utils.get_pos_data(params.devdata)
    testexamples = utils.get_pos_data(params.testdata)

    model = pos_tagging(params, trainexamples)
    model.train(params, trainexamples, devexamples, testexamples)
else:
    examples = utils.get_ppdb_data(params.train)

    if args.num_examples:
        examples = examples[0:args.num_examples]

    if params.nntype == 'charlstm':
        model = char_lstm_model(params)
    elif params.nntype == 'charcnn':
        model = char_cnn_model(params)
    elif params.nntype == 'charagram':
        model = charagram_model(params)
    else:
        "Error no type specified"

    utils.train(model, examples, params)
コード例 #23
0
    print('updating net...')
    net.collect_params().reset_ctx(ctx)
    em = array(em, ctx=mx.cpu())
    net.collect_params()['sequential0_embedding0_weight'].set_data(em)
    net.collect_params()['sequential0_embedding0_weight'].grad_req = 'null'

    print_batches = 100
    shuffle_idx = np.random.permutation(train_data.shape[0])
    train_data = train_data[shuffle_idx]
    train_label = train_label[shuffle_idx]

    data_iter = NDArrayIter(data=train_data[:-5000],
                            label=train_label[:-5000],
                            batch_size=args.batch_size,
                            shuffle=True)
    val_data_iter = NDArrayIter(data=train_data[-5000:],
                                label=train_label[-5000:],
                                batch_size=args.batch_size,
                                shuffle=False)
    trainer = Trainer(net.collect_params(), 'adam', {'learning_rate': 0.001})
    # trainer = Trainer(net.collect_params(),'RMSProp', {'learning_rate': 0.001})
    print("training data")
    utils.train(data_iter,
                val_data_iter,
                net,
                EntropyLoss,
                trainer,
                ctx,
                num_epochs=args.epochs,
                print_batches=print_batches)
コード例 #24
0
ファイル: train.py プロジェクト: jwieting/paragram-word
)

args = parser.parse_args()

params.LW = args.LW
params.outfile = args.outfile
params.batchsize = args.batchsize
params.dim = args.dim
params.wordfile = args.wordfile
params.save = str2bool(args.save)
params.train = args.train
params.margin = args.margin
params.type = args.samplingtype
params.epochs = args.epochs
params.evaluate = str2bool(args.evaluate)
params.learner = str2learner(args.learner)
params.learner = lasagne.updates.adagrad

(words, We) = getWordmap(params.wordfile)
examples = getData(params.train, words)

if args.num_examples:
    examples = examples[0 : args.num_examples]

print "Number of training examples: ", len(examples)
print sys.argv

model = paragram_word_model(We, params)

train(model, examples, words, params)
コード例 #25
0
ファイル: recsys.py プロジェクト: cornell-brg/hb-pytorch-apps
# Quit here if dry run
if args.dry:
    exit(0)

# -------------------------------------------------------------------------
# Training
# -------------------------------------------------------------------------

if args.training:

    opt = torch.optim.Adam(model.parameters(), lr=0.01)
    loss = F.binary_cross_entropy_with_logits

    train(model,
          shuf_dataloader,
          opt,
          loss,
          args)

# -------------------------------------------------------------------------
# Inference
# -------------------------------------------------------------------------

if args.inference:

    loss = F.binary_cross_entropy_with_logits
    preds = []

    def collector(outputs, targets):
        preds.append(outputs.detach().cpu().numpy())
コード例 #26
0
        loss_q = ((self.q(states, actions) - y) ** 2).mean()
        loss_pi = -(self.q(states, self.pi(states))).mean()

        # Update pi
        self.optim_pi.zero_grad()
        loss_pi.backward()
        self.optim_pi.step()

        # Update q
        self.optim_q.zero_grad()
        loss_q.backward()
        self.optim_q.step()

        # Copy to the target networks
        with torch.no_grad():
            # Copy to the targets networks
            for p_target, p in zip(self.pi_target.parameters(), self.pi.parameters()):
                p_target.mul_(polyak_factor)
                p_target.add_((1 - polyak_factor) * p)

            for p_target, p in zip(self.q_target.parameters(), self.q.parameters()):
                p_target.mul_(polyak_factor)
                p_target.add_((1 - polyak_factor) * p)

    def evaluate(self):
        self.noise_scale = 0


train(gym.make('Pendulum-v0'), Agent, plot_frequency=10, tests=5)
コード例 #27
0
ファイル: main.py プロジェクト: cleverhans-lab/capc-iclr
def train_private_models(args):
    """Train N = num-models private models."""
    assert 0 <= args.begin_id and args.begin_id < args.end_id and args.end_id <= args.num_models
    # Logs
    filename = 'logs-(id:{:d}-{:d})-(num-epochs:{:d}).txt'.format(
        args.begin_id + 1, args.end_id, args.num_epochs)
    file = open(os.path.join(args.private_model_path, filename), 'w')
    utils.augmented_print("##########################################", file)
    utils.augmented_print(
        "Training private models on '{}' dataset!".format(args.dataset), file)
    utils.augmented_print(
        "Training private models on '{}' architecture!".format(
            args.architecture), file)
    utils.augmented_print(
        "Number of private models: {:d}".format(args.num_models), file)
    utils.augmented_print("Initial learning rate: {:.2f}".format(args.lr), file)
    utils.augmented_print(
        "Number of epochs for training each model: {:d}".format(
            args.num_epochs), file)
    # Dataloaders
    if args.dataset_type == 'imbalanced':
        all_private_trainloaders = utils.load_private_data_imbalanced(args)
    elif args.dataset_type == 'balanced':
        all_private_trainloaders = utils.load_private_data(args)
    else:
        raise Exception('Unknown dataset type: {}'.format(args.dataset_type))
    evalloader = utils.load_evaluation_data(args)
    # Training
    all_acc = []
    for id in range(args.begin_id, args.end_id):
        utils.augmented_print("##########################################",
                              file)
        # Private model
        model = models.Private_Model('model({:d})'.format(id + 1), args)
        if args.cuda:
            model.cuda()
        trainloader = all_private_trainloaders[id]
        counts, ratios = utils.class_ratio(trainloader.dataset, args)
        utils.augmented_print(
            "Label counts: {}".format(np.array2string(counts, separator=', ')),
            file)
        utils.augmented_print("Class ratios: {}".format(
            np.array2string(ratios, precision=2, separator=', ')), file)
        utils.augmented_print(
            "Number of samples: {:d}".format(len(trainloader.dataset)), file)
        utils.augmented_print("Steps per epoch: {:d}".format(len(trainloader)),
                              file)
        # Optimizer
        optimizer = optim.SGD(model.parameters(), lr=args.lr,
                              momentum=args.momentum,
                              weight_decay=args.weight_decay)

        scheduler = get_scheduler(args=args, optimizer=optimizer)

        # Training steps
        for epoch in range(args.num_epochs):
            train_loss = utils.train(model, trainloader, optimizer, args)
            # Scheduler step is based only on the train data, we do not use the
            # test data to schedule the decrease in the learning rate.
            scheduler.step(train_loss)
        eval_loss, acc = utils.evaluate(model, evalloader, args)
        acc_detailed = utils.evaluate_detailed(model, evalloader, args)
        all_acc.append(acc)
        utils.augmented_print(
            "Model '{}' | Evaluation Loss: {:.4f} | Accuracy: {:.2f}% | Detailed Accuracy(%): {}".format(
                model.name, eval_loss, acc,
                np.array2string(acc_detailed, precision=2, separator=', ')),
            file, flush=True)
        # Checkpoints
        state = {'epoch': args.num_epochs, 'accuracy': acc,
                 'eval_loss': eval_loss, 'state_dict': model.state_dict()}
        filename = "checkpoint-{}.pth.tar".format(model.name)
        filepath = os.path.join(args.private_model_path, filename)
        torch.save(state, filepath)
    utils.augmented_print("##########################################", file)
    utils.augmented_print(
        "Average accuracy of private models: {:.2f}%".format(np.mean(all_acc)),
        file)
    utils.augmented_print("##########################################", file)
    file.close()
コード例 #28
0
ファイル: main.py プロジェクト: giannispan2103/harassment
def run_model(model_name, data_dict, cuda):
    print("running ", model_name)
    if model_name not in IMPLEMENTED_MODELS:
        NotImplementedError(
            "You must choose one of these:{}".format(IMPLEMENTED_MODELS))
    else:

        emb_matrix = data_dict['emb_matrix']
        train_batches = data_dict['train_batches']
        val_batches = data_dict['val_batches']
        test_batches = data_dict['test_batches']
        set_seeds(SEED)

        harassment_f1_scores = []
        harassment_recall_scores = []
        harassment_precision_scores = []

        indirect_f1_scores = []
        indirect_recall_scores = []
        indirect_precision_scores = []

        sexual_f1_scores = []
        sexual_recall_scores = []
        sexual_precision_scores = []

        physical_f1_scores = []
        physical_recall_scores = []
        physical_precision_scores = []

        runs = CONFIG['iterations']
        for i in range(1, runs + 1):
            print("***** iteration: ", i)
            if model_name == "vanilla_projected_last":
                model = ProjectedVanillaRNN(
                    emb_matrix, embeddings_dropout=CONFIG['dropout'])
            elif model_name == "vanilla_projected_avg":
                model = ProjectedVanillaRNN(
                    emb_matrix,
                    avg_pooling=True,
                    embeddings_dropout=CONFIG['dropout'])
            elif model_name == "multi_attention":
                model = MultiAttentionRNN(
                    emb_matrix,
                    embeddings_dropout=CONFIG['dropout'],
                    trainable_embeddings=CONFIG['trainable_embeddings'])
            elif model_name == "multi_projected_attention":
                model = ProjectedMultiAttentionRNN(
                    emb_matrix, embeddings_dropout=CONFIG['dropout'])
            elif model_name == "attention":
                model = AttentionRNN(
                    emb_matrix,
                    embeddings_dropout=CONFIG['dropout'],
                    trainable_embeddings=CONFIG['trainable_embeddings'])
            elif model_name == "projected_attention":
                model = ProjectedAttentionRNN(
                    emb_matrix, embeddings_dropout=CONFIG['dropout'])
            elif model_name == "vanilla_avg":
                model = VanillaRnn(
                    emb_matrix,
                    avg_pooling=True,
                    embeddings_dropout=CONFIG['dropout'],
                    trainable_embeddings=CONFIG['trainable_embeddings'])

            else:
                model = VanillaRnn(
                    emb_matrix,
                    embeddings_dropout=CONFIG['dropout'],
                    trainable_embeddings=CONFIG['trainable_embeddings'])
            optimizer = Adam(model.params, CONFIG['lr'])
            criterion = BCEWithLogitsLoss()
            train(model=model,
                  train_batches=train_batches,
                  test_batches=val_batches,
                  optimizer=optimizer,
                  criterion=criterion,
                  epochs=CONFIG['epochs'],
                  init_patience=CONFIG['patience'],
                  cuda=cuda)
            model = load_model(model)
            d = generate_results(model, test_batches, cuda)
            df = generate_test_submission_values(
                harassment_dict=d['harassment'],
                sexual_dict=d['sexual'],
                physical_dict=d['physical'],
                indirect_dict=d['indirect'])
            df_results = pd.read_csv(TEST_RESULTS)
            harassment_f1_scores.append(
                f1_score(df_results.harassment.values, df.Harassment.values))
            harassment_precision_scores.append(
                precision_score(df_results.harassment.values,
                                df.Harassment.values))
            harassment_recall_scores.append(
                recall_score(df_results.harassment.values,
                             df.Harassment.values))

            indirect_f1_scores.append(
                f1_score(df_results.IndirectH.values, df.IndirectH.values))
            indirect_precision_scores.append(
                precision_score(df_results.IndirectH.values,
                                df.IndirectH.values))
            indirect_recall_scores.append(
                recall_score(df_results.IndirectH.values, df.IndirectH.values))

            sexual_f1_scores.append(
                f1_score(df_results.SexualH.values, df.SexualH.values))
            sexual_precision_scores.append(
                precision_score(df_results.SexualH.values, df.SexualH.values))
            sexual_recall_scores.append(
                recall_score(df_results.SexualH.values, df.SexualH.values))

            physical_f1_scores.append(
                f1_score(df_results.PhysicalH.values, df.PhysicalH.values))
            physical_precision_scores.append(
                precision_score(df_results.PhysicalH.values,
                                df.PhysicalH.values))
            physical_recall_scores.append(
                recall_score(df_results.PhysicalH.values, df.PhysicalH.values))

        results_dict = {
            'model': [model_name for _ in range(runs)],
            'harassment_f1_score': harassment_f1_scores,
            'harassment_recall': harassment_recall_scores,
            'harassment_precision': harassment_precision_scores,
            'indirect_f1_score': indirect_f1_scores,
            'indirect_recall': indirect_recall_scores,
            'indirect_precision': indirect_precision_scores,
            'sexual_f1_score': sexual_f1_scores,
            'sexual_recall': sexual_recall_scores,
            'sexual_precision': sexual_precision_scores,
            'physical_f1_score': physical_f1_scores,
            'physical_recall': physical_recall_scores,
            'physical_precision': physical_precision_scores
        }
        df = pd.DataFrame.from_dict(results_dict)
        if "results.csv" in os.listdir(RESULTS_DIR):
            df_old = pd.read_csv(RESULTS_DIR + "results.csv")
            df = pd.concat([df_old, df])
        df.to_csv(RESULTS_DIR + "results.csv", index=False)
コード例 #29
0
ファイル: main.py プロジェクト: cleverhans-lab/capc-iclr
def retrain_private_models(args):
    """Retrain N = num-querying-parties private models."""
    assert 0 <= args.begin_id and args.begin_id < args.end_id and args.end_id <= args.num_querying_parties
    # Logs
    filename = 'logs-(num_models:{:d})-(id:{:d}-{:d})-(num-epochs:{:d})-(budget:{:f})-(dataset:{})-(architecture:{}).txt'.format(
        args.num_models,
        args.begin_id + 1, args.end_id,
        args.num_epochs,
        args.budget,
        args.dataset,
        args.architecture,
    )
    print('filename: ', filename)
    file = open(os.path.join(args.retrained_private_model_path, filename), 'w')
    utils.augmented_print("##########################################", file)
    utils.augmented_print(
        "Retraining the private models of all querying parties on '{}' dataset!".format(
            args.dataset), file)
    utils.augmented_print(
        "Number of querying parties: {:d}".format(args.num_querying_parties),
        file)
    utils.augmented_print("Initial learning rate: {:.2f}".format(args.lr), file)
    utils.augmented_print(
        "Number of epochs for retraining each model: {:d}".format(
            args.num_epochs), file)
    # Dataloaders
    # all_augmented_dataloaders = utils.load_private_data_and_qap_imbalanced(args)
    all_augmented_dataloaders = utils.load_private_data_and_qap(args)
    evalloader = utils.load_evaluation_data(args)
    # Training
    for id in range(args.begin_id, args.end_id):
        utils.augmented_print("##########################################",
                              file)
        # Different random seed
        seed_list = [11, 13, 17, 113, 117]
        eval_loss_list = []
        acc_list = []
        acc_detailed_list = []
        for seed in seed_list:
            args.seed = seed
            random.seed(args.seed)
            np.random.seed(args.seed)
            torch.manual_seed(args.seed)
            if args.cuda:
                torch.cuda.manual_seed(args.seed)
                torch.backends.cudnn.deterministic = True
                torch.backends.cudnn.benchmark = False
            # Private model
            model = models.Private_Model('model({:d})'.format(id + 1), args)
            if args.cuda:
                model.cuda()
            trainloader = all_augmented_dataloaders[id]
            # Optimizer
            optimizer = optim.SGD(model.parameters(), lr=args.lr,
                                  momentum=args.momentum,
                                  weight_decay=args.weight_decay)
            decay_steps = [int(args.num_epochs * 0.5),
                           int(args.num_epochs * 0.75),
                           int(args.num_epochs * 0.9)]
            # Training steps
            for epoch in range(args.num_epochs):
                if epoch in decay_steps:
                    for param_group in optimizer.param_groups:
                        param_group['lr'] *= 0.1
                utils.train(model, trainloader, optimizer, args)
            eval_loss, acc = utils.evaluate(model, evalloader, args)
            acc_detailed = utils.evaluate_detailed(model, evalloader, args)
            eval_loss_list.append(eval_loss)
            acc_list.append(acc)
            acc_detailed_list.append(acc_detailed)
            # # Checkpoints
            # state = {'epoch': args.num_epochs, 'accuracy': acc, 'eval_loss': eval_loss, 'state_dict': model.state_dict()}
            # filename = "checkpoint-{}.pth.tar".format(model.name)
            # filepath = os.path.join(args.retrained_private_model_path, filename)
            # torch.save(state, filepath)
        eval_loss_list = np.array(eval_loss_list)
        acc_list = np.array(acc_list)
        acc_detailed_list = np.array(acc_detailed_list)
        counts, ratios = utils.class_ratio(trainloader.dataset, args)
        utils.augmented_print(
            "Label counts: {}".format(np.array2string(counts, separator=', ')),
            file)
        utils.augmented_print("Class ratios: {}".format(
            np.array2string(ratios, precision=2, separator=', ')), file)
        utils.augmented_print(
            "Number of samples: {:d}".format(len(trainloader.dataset)), file)
        utils.augmented_print("Steps per epoch: {:d}".format(len(trainloader)),
                              file)
        utils.augmented_print(
            "Model: '{}' | Architecture: '{}' | Dataset: '{}' | Number of models: {:d} | Budget: {:.4f} | Evaluation Loss: {:.4f} | Accuracy: {:.2f}% | Detailed Accuracy(%): {} | Standard Deviation(%): {}".format(
                model.name,
                args.architecture,
                args.dataset,
                args.num_models,
                args.budget,
                eval_loss_list.mean(axis=0), acc_list.mean(axis=0),
                np.array2string(acc_detailed_list.mean(axis=0), precision=2,
                                separator=', '),
                np.array2string(acc_detailed_list.std(axis=0), precision=2,
                                separator=', ')), file, flush=True)
    utils.augmented_print("##########################################", file)
    file.close()
コード例 #30
0
ファイル: main.py プロジェクト: CaiQiuYu/Simple-RCAN
def main(arg):
    sys.stdout = Logger(osp.join(args.logs_dir, 'log_1109_rcan.txt'))
    print("====>> Read file list")
    file_name = sorted(os.listdir(arg.VIDEO4K_LR))
    lr_list = []
    hr_list = []
    for fi in file_name:
        lr_tmp = sorted(glob.glob(arg.VIDEO4K_LR + '/' + fi + '/*.png'))
        lr_list.extend(lr_tmp)
        hr_tmp = sorted(glob.glob(arg.VIDEO4K_HR + '/' + fi + '/*.png'))
        if len(hr_tmp) != 100:
            print(fi)
        hr_list.extend(hr_tmp)

    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    print(len(lr_list))
    print(len(hr_list))
    cudnn.benchmark = True

    print("===> Loading datasets")
    data_set = DatasetLoader(lr_list, hr_list, arg.patch_size, arg.scale)
    train_loader = DataLoader(data_set,
                              batch_size=arg.batch_size,
                              num_workers=arg.workers,
                              shuffle=True,
                              pin_memory=True)

    print("===> Building model")
    device_ids = [0]
    model = RCAN(arg)
    criterion = nn.L1Loss(size_average=False)

    print("===> Setting GPU")
    model = nn.DataParallel(model, device_ids=device_ids)
    model = model.cuda()
    criterion = criterion.cuda()

    # optionally resume from a checkpoint
    if arg.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(arg.resume))
            checkpoint = torch.load(arg.resume)
            new_state_dict = OrderedDict()
            for k, v in checkpoint.items():
                namekey = 'module.' + k  # remove `module.`
                new_state_dict[namekey] = v
            # load params
            model.load_state_dict(new_state_dict)
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    print("===> Setting Optimizer")
    optimizer = optim.Adam(filter(lambda p: p.requires_grad,
                                  model.parameters()),
                           lr=arg.lr,
                           weight_decay=arg.weight_decay,
                           betas=(0.9, 0.999),
                           eps=1e-08)

    print("===> Training")
    for epoch in range(args.start_epoch, args.epochs):
        adjust_lr(optimizer, epoch)
        train(
            train_loader,
            optimizer,
            model,
            criterion,
            epoch,
            arg,
            len(hr_list),
        )
        save_checkpoint(model, epoch)
コード例 #31
0
ファイル: train.py プロジェクト: maozhiqiang/tacotron2-1
from torch.optim import Adam

from audio import wav_to_spectrogram
from datasets import LJSpeechDataset
from models import MelSpectrogramNet
from text import text_to_sequence
from utils import train
from torch.utils.data.dataset import Subset


num_epochs = 10
batch_size = 1

PATH = '/home/austin/data/tacotron/LJSpeech-1.0'
dataset = LJSpeechDataset(path=PATH, text_transforms=text_to_sequence,
                          audio_transforms=wav_to_spectrogram)

dataset = Subset(dataset, range(1))

melnet = MelSpectrogramNet()
melnet.cuda()
optimizer = Adam(melnet.parameters())
train(melnet, optimizer, dataset, num_epochs, batch_size)
コード例 #32
0
ファイル: TRPO.py プロジェクト: elumixor/DRL
    search_dir = conjugate_gradient(HVP, g)
    max_length = torch.sqrt(2 * delta / (search_dir @ HVP(search_dir)))
    max_step = max_length * search_dir

    def criterion(step):
        apply_update(step)

        with torch.no_grad():
            distribution_new = actor(states)
            distribution_new = torch.distributions.utils.clamp_probs(distribution_new)
            probabilities_new = distribution_new[range(distribution_new.shape[0]), actions]

            L_new = surrogate_loss(probabilities_new, probabilities, advantages)
            KL_new = kl_div(distribution, distribution_new)

        L_improvement = L_new - L

        if L_improvement > 0 and KL_new <= delta:
            return True

        apply_update(-step)
        return False

    line_search(max_step, criterion, max_iterations=10)


# Train using our get_action() and update() functions
train(env, get_action, update_agent, num_rollouts=10, render_frequency=None, print_frequency=10,
      plot_frequency=None, epochs=1000)
コード例 #33
0
                patience=args['patience'],
                verbose=True)
            module[idx].load_state_dict(checkpoint['model_state_dict'])
            if args['load_optimizer']:
                optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
            if args['load_scheduler']:
                scheduler.load_state_dict(checkpoint['scheduler_state_dict'])

        if len(module) == 1:
            module = module[0]
        else:
            module = model.Ensemble(module, args)

    if args['mode'] == 'train':
        logger.info('Starting training.')
        utils.train(module, optimizer, scheduler, train_iter, val_iter, args)

    elif args['mode'] == 'eval':
        logger.info('Starting evaluation.')
        evaluation_results = {}
        # evaluation_results['train'] = utils.eval(module, train_iter, args)
        evaluation_results['valid'] = utils.eval(module,
                                                 val_iter,
                                                 args,
                                                 write_to_file=True)
        logger.info('\n' + pprint.pformat(evaluation_results), args)

    elif args['mode'] == 'test':
        logger.info('Starting testing.')
        utils.predict_write_to_file(module, test_iter, args)
        logger.info('Done writing predictions to file.')
コード例 #34
0
# Import the necessary packages

import pandas as pd
import argparse
import cv2
from utils import classify, describe, train

# Load Random Forest Classifier
model = train()

# Set up the argument parser
ap = argparse.ArgumentParser()

# Define arguments
ap.add_argument("-f", "--file", required=True, help="Path to the pandas dataframe with Instagram metadata.")

# Parse arguments
args = vars(ap.parse_args())

# Assign arguments to variables
df_file = args["file"]

# Load dataframe
df = pd.read_pickle(df_file)

print "*** Loading Instagram metadata from {} ...".format(df_file)

# Loop over images in the dataframe
for index, row in df.iterrows():
    # Define path
    ipath = "test_output/" + row['Filename']
コード例 #35
0
def main(train_file,
         valid_file,
         test_file,
         embeddings_file,
         target_dir,
         hidden_size=300,
         dropout=0.5,
         num_classes=2,
         epochs=64,
         batch_size=32,
         lr=0.0004,
         patience=5,
         max_grad_norm=10.0,
         checkpoint=None,
         proportion=1,
         output=None):
    """
    Train the ESIM model on the SNLI dataset.

    Args:
        train_file: A path to some preprocessed data that must be used
            to train the model.
        valid_file: A path to some preprocessed data that must be used
            to validate the model.
        embeddings_file: A path to some preprocessed word embeddings that
            must be used to initialise the model.
        target_dir: The path to a directory where the trained model must
            be saved.
        hidden_size: The size of the hidden layers in the model. Defaults
            to 300.
        dropout: The dropout rate to use in the model. Defaults to 0.5.
        num_classes: The number of classes in the output of the model.
            Defaults to 3.
        epochs: The maximum number of epochs for training. Defaults to 64.
        batch_size: The size of the batches for training. Defaults to 32.
        lr: The learning rate for the optimizer. Defaults to 0.0004.
        patience: The patience to use for early stopping. Defaults to 5.
        checkpoint: A checkpoint from which to continue training. If None,
            training starts from scratch. Defaults to None.
    """
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    print(20 * "=", " Preparing for training ", 20 * "=")

    if not os.path.exists(target_dir):
        os.makedirs(target_dir)

    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    with open(train_file, "rb") as pkl:
        train_data = NLIDataset(
            pickle.load(pkl), proportion, isRandom=True
        )  #training data will be shuffled first, then we will get random data of different proportion

    train_loader = DataLoader(train_data, shuffle=False, batch_size=batch_size)

    print("\t* Loading validation data...")
    with open(valid_file, "rb") as pkl:
        valid_data = NLIDataset(pickle.load(pkl))

    valid_loader = DataLoader(valid_data, shuffle=False, batch_size=batch_size)

    print("\t* Loading test data...")
    with open(test_file, "rb") as pkl:
        test_data = NLIDataset(pickle.load(pkl))

    test_loader = DataLoader(test_data, shuffle=False, batch_size=batch_size)

    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    with open(embeddings_file, "rb") as pkl:
        embeddings = torch.tensor(pickle.load(pkl), dtype=torch.float)\
                     .to(device)

    model = ESIM(embeddings.shape[0],
                 embeddings.shape[1],
                 hidden_size,
                 embeddings=embeddings,
                 dropout=dropout,
                 num_classes=num_classes,
                 device=device).to(device)

    # -------------------- Preparation for training  ------------------- #
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           mode="max",
                                                           factor=0.5,
                                                           patience=0)

    best_score = 0.0
    start_epoch = 1

    # Data for loss curves plot.
    epochs_count = []
    train_losses = []
    valid_losses = []

    # Continuing training from a checkpoint if one was given as argument.
    if checkpoint:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint["best_score"]

        print("\t* Training will continue on existing model from epoch {}...".
              format(start_epoch))

        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        epochs_count = checkpoint["epochs_count"]
        train_losses = checkpoint["train_losses"]
        valid_losses = checkpoint["valid_losses"]

    # Compute loss and accuracy before starting (or resuming) training.

    _, valid_loss, valid_accuracy = validate(model, valid_loader, criterion)
    print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%".
          format(valid_loss, (valid_accuracy * 100)))

    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=", "Training ESIM model on device: {}".format(device),
          20 * "=")

    patience_counter = 0
    for epoch in range(start_epoch, epochs + 1):
        epochs_count.append(epoch)

        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader,
                                                       optimizer, criterion,
                                                       epoch, max_grad_norm)

        train_losses.append(epoch_loss)
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))

        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = validate(
            model, valid_loader, criterion)

        valid_losses.append(epoch_loss)
        print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))

        # Update the optimizer's learning rate with the scheduler.
        scheduler.step(epoch_accuracy)

        print("* Testing for epoch {}:".format(epoch))
        batch_time, total_time, f1, accuracy = test(model, num_classes,
                                                    test_loader)
        print(
            "-> Average batch processing time: {:.4f}s, total test time: {:.4f}s, f1: {:.4f}, accuracy: {:.4f}%"
            .format(batch_time, total_time, f1, (accuracy * 100)))
        print(20 * "====")

        # Early stopping on validation accuracy.
        if epoch > 2:
            if epoch_accuracy <= best_score:
                patience_counter += 1
            else:
                best_score = epoch_accuracy
                patience_counter = 0
                # Save the best model. The optimizer is not saved to avoid having
                # a checkpoint file that is too heavy to be shared. To resume
                # training from the best model, use the 'esim_*.pth.tar'
                # checkpoints instead.
                torch.save(
                    {
                        "epoch": epoch,
                        "model": model.state_dict(),
                        "best_score": best_score,
                        "epochs_count": epochs_count,
                        "train_losses": train_losses,
                        "valid_losses": valid_losses
                    },
                    os.path.join(
                        target_dir,
                        output + "_" + str(proportion) + "_best.pth.tar"))

            if patience_counter >= patience:
                print("-> Early stopping: patience limit reached, stopping...")
                checkpoint = torch.load(
                    os.path.join(
                        target_dir,
                        output + "_" + str(proportion) + "_best.pth.tar"))
                # Retrieving model parameters from checkpoint.
                vocab_size = checkpoint["model"][
                    "_word_embedding.weight"].size(0)
                embedding_dim = checkpoint["model"][
                    '_word_embedding.weight'].size(1)
                hidden_size = checkpoint["model"]["_projection.0.weight"].size(
                    0)
                num_classes = checkpoint["model"][
                    "_classification.4.weight"].size(0)
                print("\t* Final test...")
                model = ESIM(vocab_size,
                             embedding_dim,
                             hidden_size,
                             num_classes=num_classes,
                             device=device).to(device)
                model.load_state_dict(checkpoint["model"])
                batch_time, total_time, f1, accuracy = test(
                    model, num_classes, test_loader, print_Confusion=True)
                print("-> Final f1, accuracy: {:.4f}, {:.4f}%".format(
                    f1, accuracy * 100))
                os.remove(
                    os.path.join(
                        target_dir,
                        output + "_" + str(proportion) + "_best.pth.tar"))
                break
        if epoch == 15:
            checkpoint = torch.load(
                os.path.join(target_dir,
                             output + "_" + str(proportion) + "_best.pth.tar"))
            # Retrieving model parameters from checkpoint.
            vocab_size = checkpoint["model"]["_word_embedding.weight"].size(0)
            embedding_dim = checkpoint["model"]['_word_embedding.weight'].size(
                1)
            hidden_size = checkpoint["model"]["_projection.0.weight"].size(0)
            num_classes = checkpoint["model"]["_classification.4.weight"].size(
                0)
            print("\t* Final test...")
            model = ESIM(vocab_size,
                         embedding_dim,
                         hidden_size,
                         num_classes=num_classes,
                         device=device).to(device)
            model.load_state_dict(checkpoint["model"])
            batch_time, total_time, f1, accuracy = test(model,
                                                        num_classes,
                                                        test_loader,
                                                        print_Confusion=True)
            print("-> Final f1, accuracy: {:.4f}, {:.4f}%".format(
                f1, accuracy * 100))
            os.remove(
                os.path.join(target_dir,
                             output + "_" + str(proportion) + "_best.pth.tar"))
コード例 #36
0
ファイル: bot.py プロジェクト: atimoshina/python_course
import telebot
import random
from utils import train, generate_sentence
import phrases
import re
import config

bot = telebot.TeleBot(config.TOKEN, threaded=False)

model = train('corpus.txt')

@bot.message_handler(commands=['start'])
def start_command(message):
    bot.send_message(message.chat.id, phrases.start)

@bot.message_handler(commands=['help'])
def help_command(message):
    bot.send_message(message.chat.id, phrases.helpa)

regEng = re.compile('[a-zA-Z]+')

@bot.message_handler(content_types=['text'])
def reply(message):
    if regEng.search(message.text) is not None:
        reply = random.choice(phrases.english)
    else:
        s = message.text.lower()
        s = s.split()
        s = s[-1].rstrip('.,:;?!')
        try:
            reply = generate_sentence(model,s)
コード例 #37
0
        else:
            device_ids = None

        model = nn.DataParallel(model, device_ids=device_ids).cuda()

    criterion = CrossEntropyLoss()

    train_kwargs = dict(
        args=args,
        model=model,
        criterion=criterion,
        train_loader=train_loader,
        valid_loader=valid_loader,
        validation=validation,
        patience=10,
    )

    if getattr(model, 'finetune', None):
        utils.train(
            init_optimizer=lambda lr: SGD(model.net.fc.parameters(), lr=lr, momentum=0.9),
            n_epochs=1,
            **train_kwargs)

        utils.train(
            init_optimizer=lambda lr: SGD(model.parameters(), lr=lr, momentum=0.9),
            **train_kwargs)
    else:
        utils.train(
            init_optimizer=lambda lr: SGD(model.parameters(), lr=lr, momentum=0.9),
            **train_kwargs)
コード例 #38
0
ファイル: train.py プロジェクト: minxueric/Pm25Predict
# train loglasso model per week

import utils

utils.train() 
コード例 #39
0
ファイル: nyse.py プロジェクト: keerthan2/NYSE_Prediction
model_name = 'model.pth'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print(f"Found {device} ...")
print("Instantiating RNN Model")

if not os.path.exists(log_dir):
    os.mkdir(log_dir)
model_save_path = os.path.join(log_dir, model_name)
model = RNNModel(x_train.shape[-1], hidden_dim, num_layers,
                 y_train.shape[-1]).to(device)
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.MSELoss()

print("< Training starts >")
model = train(model, dataloader_train, dataloader_val, device, criterion,
              optimizer, n_epochs, model_save_path)

print("Testing on test data-set ")
log_dir = './ckpt'
model_name = 'model.pth'
model_save_path = os.path.join(log_dir, model_name)
output_dim = 4
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = RNNModel(x_test.shape[-1], hidden_dim, num_layers,
                 output_dim).to(device)
y_test_pred = test(x_test, model, model_save_path, device)
ft_dict = {
    0: 'open',
    1: 'high',
    2: 'low',
    3: 'close',
コード例 #40
0
    criterion = MultiLabelSoftMarginLoss()

    train_kwargs = dict(
        args=args,
        model=model,
        criterion=criterion,
        train_loader=train_loader,
        valid_loader=valid_loader,
        validation=validation,
        patience=4,
    )

    if getattr(model, 'finetune', None):
        utils.train(
            init_optimizer=lambda lr: Adam(model.net.fc.parameters(), lr=lr),
            n_epochs=1,
            **train_kwargs)

        utils.train(
            init_optimizer=lambda lr: Adam(model.parameters(), lr=lr),
            **train_kwargs)
    else:
        utils.train(
            init_optimizer=lambda lr: Adam(model.parameters(), lr=lr),
            **train_kwargs)


    #
    #
    # utils.train(
    #     init_optimizer=lambda lr: Adam(model.parameters(), lr=lr),
コード例 #41
0
def model_train_validate_test(train_df,
                              dev_df,
                              test_df,
                              target_dir,
                              max_seq_len=64,
                              num_labels=2,
                              epochs=10,
                              batch_size=32,
                              lr=2e-05,
                              patience=1,
                              max_grad_norm=10.0,
                              if_save_model=True,
                              checkpoint=None):

    bertmodel = RobertModel(requires_grad=True, num_labels=num_labels)
    tokenizer = bertmodel.tokenizer

    print(20 * "=", " Preparing for training ", 20 * "=")
    # 保存模型的路径,没有则创建文件夹
    if not os.path.exists(target_dir):
        os.makedirs(target_dir)
    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    train_data = DataPrecessForSentence(tokenizer, train_df, max_seq_len)
    train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)

    print("\t* Loading validation data...")
    dev_data = DataPrecessForSentence(tokenizer, dev_df, max_seq_len)
    dev_loader = DataLoader(dev_data, shuffle=True, batch_size=batch_size)

    print("\t* Loading test data...")
    test_data = DataPrecessForSentence(tokenizer, test_df, max_seq_len)
    test_loader = DataLoader(test_data, shuffle=False, batch_size=batch_size)
    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    device = torch.device("cuda")
    model = bertmodel.to(device)
    total_params = sum(p.numel() for p in model.parameters())
    print(f'{total_params:,} total parameters.')
    total_trainable_params = sum(p.numel() for p in model.parameters()
                                 if p.requires_grad)
    print(f'{total_trainable_params:,} training parameters.')
    # -------------------- Preparation for training  ------------------- #
    # 待优化的参数
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(optimizer_grouped_parameters, lr=lr)

    # 当网络的评价指标不在提升的时候,可以通过降低网络的学习率来提高网络性能
    warmup_steps = math.ceil(len(train_loader) * epochs * 0.1)
    total_steps = len(train_loader) * epochs
    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=0,
                                                num_training_steps=total_steps)
    # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="max", factor=0.85, patience=0)

    best_score = 0.0
    start_epoch = 1
    # Data for loss curves plot
    epochs_count = []
    train_losses = []
    train_accuracies = []
    valid_losses = []
    valid_accuracies = []
    # Continuing training from a checkpoint if one was given as argument
    if checkpoint:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint["best_score"]
        print("\t* Training will continue on existing model from epoch {}...".
              format(start_epoch))
        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        epochs_count = checkpoint["epochs_count"]
        train_losses = checkpoint["train_losses"]
        train_accuracy = checkpoint["train_accuracy"]
        valid_losses = checkpoint["valid_losses"]
        valid_accuracy = checkpoint["valid_accuracy"]
    # Compute loss and accuracy before starting (or resuming) training.
    _, valid_loss, valid_accuracy, _, = validate(model, dev_loader)
    print("\n* Validation loss before training: {:.4f}, accuracy: {:.4f}%".
          format(valid_loss, (valid_accuracy * 100)))
    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=",
          "Training roberta model on device: {}".format(device), 20 * "=")
    patience_counter = 0
    for epoch in range(start_epoch, epochs + 1):
        epochs_count.append(epoch)

        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader,
                                                       optimizer, epoch,
                                                       max_grad_norm)
        train_losses.append(epoch_loss)
        train_accuracies.append(epoch_accuracy)

        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))

        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy, _, = validate(
            model, dev_loader)
        valid_losses.append(epoch_loss)
        valid_accuracies.append(epoch_accuracy)
        print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))

        # Update the optimizer's learning rate with the scheduler.
        # scheduler.step(epoch_accuracy)
        scheduler.step()
        # Early stopping on validation accuracy.
        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            best_score = epoch_accuracy
            patience_counter = 0

            if (if_save_model):
                torch.save(
                    {
                        "epoch": epoch,
                        "model": model.state_dict(),
                        "optimizer": optimizer.state_dict(),
                        "best_score": best_score,  # 验证集上的最优准确率
                        "epochs_count": epochs_count,
                        "train_losses": train_losses,
                        "train_accuracy": train_accuracies,
                        "valid_losses": valid_losses,
                        "valid_accuracy": valid_accuracies
                    },
                    os.path.join(target_dir, "best.pth.tar"))
                print("save model succesfully!\n")

            print("* Test for epoch {}:".format(epoch))
            _, _, test_accuracy, predictions = validate(model, test_loader)
            print("Test accuracy: {:.4f}%\n".format(test_accuracy))
            test_prediction = pd.DataFrame({'prediction': predictions})
            test_prediction.to_csv(os.path.join(target_dir,
                                                "test_prediction.csv"),
                                   index=False)

        if patience_counter >= patience:
            print("-> Early stopping: patience limit reached, stopping...")
            break
コード例 #42
0
ファイル: demo.py プロジェクト: z01nl1o02/tests
def main():
    net = get_net()
    trainIter, testIter = get_train_test()
    trainer,loss = get_trainer(net)
    utils.train(trainIter, testIter, net, loss, trainer, utils.try_gpu(), 1000,print_batches=100)
コード例 #43
0
                                       train=False,
                                       download=True,
                                       transform=transform_test)
#testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

has_bn = utils.check_bn(model)
test_res = {'loss': None, 'accuracy': None, 'nll': None}

for epoch in range(start_epoch, args.epochs + 1):
    time_ep = time.time()

    lr = learning_rate_schedule(args.lr, epoch, args.epochs)
    #  lr = args.lr
    utils.adjust_learning_rate(optimizer, lr)

    train_res = utils.train(loaders['train'], model, optimizer, criterion,
                            regularizer)

    test_res = utils.test(loaders['test'], model, criterion, regularizer)

    test_poison_res = utils.test_poison(testset, model, criterion, regularizer)

    if epoch % args.save_freq == 0:
        utils.save_checkpoint(args.dir,
                              epoch,
                              model_state=model.state_dict(),
                              optimizer_state=optimizer.state_dict())

    time_ep = time.time() - time_ep
    values = [
        epoch, lr, train_res['loss'], train_res['accuracy'], test_res['nll'],
        test_res['accuracy'], test_poison_res['nll'],
コード例 #44
0
ファイル: train.py プロジェクト: aditya140/ques_gen
if hp.embedding == None:
    use_pretrained = True

encoder = Encoder(source_vocab_size=len(inp_lang.vocab),
                  embed_dim=hp.embed_dim,
                  hidden_dim=hp.hidden_dim,
                  n_layers=hp.n_layers,
                  dropout=hp.dropout,
                  use_pretrained=use_pretrained)
decoder = Decoder(target_vocab_size=len(opt_lang.vocab),
                  embed_dim=hp.embed_dim,
                  hidden_dim=hp.hidden_dim,
                  n_layers=hp.n_layers,
                  dropout=hp.dropout,
                  use_pretrained=use_pretrained)
seq2seq = Seq2Seq(encoder, decoder)

seq2seq.to(hp.device)
optimizer = Adam(seq2seq.parameters(), lr=hp.max_lr)
scheduler = SGDRScheduler(optimizer,
                          max_lr=hp.max_lr,
                          cycle_length=hp.cycle_length)

train(seq2seq,
      optimizer,
      scheduler,
      train_iter,
      val_iter,
      num_epochs=hp.num_epochs)

evaluate_metrics(seq2seq, test_iter)
コード例 #45
0
                           logfile=logfile)

        print()
        logfile.write('\n')
        if (i + 1) % args.save_freq == 0:
            saver.save(sess, os.path.join(savedir, 'model'))

    logfile.close()
    saver.save(sess, os.path.join(savedir, 'model'))


def test():
    sess = tf.Session()
    saver = tf.train.Saver(tnet['weights'])
    saver.restore(sess, os.path.join(savedir, 'model'))
    logger = Accumulator('cent', 'acc')
    to_run = [tnet['cent'], tnet['acc']]
    for j in range(n_test_batches):
        bx, by = mnist.test.next_batch(batch_size)
        logger.accum(sess.run(to_run, {x: bx, y: by}))
    logger.print_(header='test')


if __name__ == '__main__':
    if args.mode == 'train':
        train()
    elif args.mode == 'test':
        test()
    else:
        raise ValueError('Invalid mode %s' % args.mode)